verify if-2 and 3 are zeros of polynomial 2x^3-3x^2-11x+6 if yes then factories the polynomial
Answers
Answered by
3
Answer:
Hope it helps!! Mark this answer as brainliest if u found it useful and follow me for quick and accurate answers...
Step-by-step explanation:
(-2) and 3 are zeroes of the polynomial only if the solution of polynomial after putting the value of "x" is 0
Let p(x) = 2x^3-3x^2-11x+6
p(-2) = 2(-2)^3-3(-2)^2-11(-2)+6 = -16-12+22+6 = -28+28 = 0
p(3) = 2(3)^3-3(3)^2-11(3)+6 = 54-27-33+6 = 54-60+6 = 54-54 = 0
Hence, Both (-2) and 3 are the zeroes of the polynomial p(x)=2x^3-3x^2-11x+6
Now, Since (-2) is a zero of the polynomial. Therefore, The 1st factor is (x+2)
=> 2x^2(x+2)-7x(x+2)+3(x+2)
= (x+2)(2x^2-7x+3)
= (x+2)(2x^2-6x-x+3)
= (x+2)(2x(x-3)-1(x-3))
= (x+2)(2x-1)(x-3)
Similar questions
Social Sciences,
3 months ago
Geography,
3 months ago
Social Sciences,
3 months ago
Social Sciences,
7 months ago
Chemistry,
11 months ago
Music,
11 months ago