Math, asked by raj883574, 1 year ago

Verify it:-

2 sin 30° cos 30°=sin 60°

Answers

Answered by Anonymous
6

\huge\boxed{\fcolorbox{cyan}{grey}{Solution:-}}.

Given here,

2Sin30° Cos30° = Sin60°

[ we know,

Sin30°= 1/2

Cos30°= 3/2

Sin60°= 3/2

So,Keep all values above

2×1/2×3/2 = 3/2

=> 3/2 = 3/2

=>L.H.S.=R.H.S

Thats Proved.

➡Hopes its help u.

Answered by Anonymous
7

Step-by-step explanation:

LHS

2sin30cos30

sin60

LHS= RHS

Now methods 2

RHS

Sin(60)

sin(30 + 30)

sin30 cos30 + cos30sin30

2sin30cos30

So LHS = RHS

Methods 3

LHS

2sin30cos30

2*sqrt3/4

sqrt3/2

sin60

so LHS = RHS

Method 4

RHS

Sin60

Sqrt3/2

2sqrt3/4

2(sqrt3/2 *1/2)

2sin30cos30

so

LHS = RHS

Method 5

LHS

2sin30cos30

sqrt3/2

Now

RHS

sin60

sqrt3/2

so

LHS = RHS

Similar questions