Math, asked by bondechetan8, 9 months ago

Verify L M V T for the function f(x)=log x,€ [1,e]​

Answers

Answered by saounksh
0

 \green{\huge{\underline{</p><h2>✪<strong><u>ᴀɴsᴡᴇʀ</u></strong>✪</h2><p>}}}

ʟᴀɢʀᴀɴɢᴇ ᴍᴇᴀɴ ᴠᴀʟᴜᴇ ᴛʜᴇᴏʀᴇᴍ

If a function  f: [a, b] \to R is

  • Continuous in [a, b]
  • Differentiable in (a, b)

then there exist atleast one  c \in (a, b) such that

  •  f'(c) = \frac{f(b) - f(a)} {b-a}

ᴠᴇʀɪғɪᴄᴀᴛɪᴏɴ

The given function  f: [1, e] \to R is

 \:\:\:\:\:\:\:\:\:\:f(x) = log_{e}(x)

Continuity in [1, e]

For any  a \in [1, e]

\:\:\:\:\:\:\:\:\:\: \lim \limits_{x \to a}f(x) = \lim \limits_{x \to a}log_{e}(x)

\implies \lim \limits_{x \to a}f(x)= log_{e}(a)

\implies \lim \limits_{x \to a}f(x) = f(a)

So, f is continuous in  [1, e].

Differentiability in (1, e)

For any  a \in (1, e)

 \:\:\:\:\:\:\:\:\:\: f'(a) = \frac{d}{dx}log_{e}(x)|_{x=a}

 \implies f'(a) = \frac{1 }{x}|_{x=a}

 \implies f'(a) = \frac{1 }{a}

So, f'(a) exist at all points in (1, e).Hence f(x) is differentiable in (1, e).

Both conditions of LMVT are satisfied. Let us check if the results are true.

Now,

\:\:\:\:\:\:\:\:\:\: f'(c) = \frac{f(b) - f(a)} {b-a}

\implies \frac{1 }{c} = \frac{log_{e}(e)- log_{e}(1)} {e-1}

\implies \frac{1}{c} = \frac{1- 0} {e-1}

\implies c = e-1

\implies c ≈ 2.73 - 1

\implies c ≈ 1.73

\implies c \in (1, e)

Thus there exist c \in (1, e) such that

\:\:\:\:\:\:\:\: f'(c) = \frac{f(b) - f(a)} {b-a}

Hence, LMVT is verified.

Similar questions