Math, asked by ayush12327, 9 days ago

Verify Lagrange’s mean value theorem for f(x)=x^3-x^2-5x+3 in [0, 4] and find the constant ‘c'​

Answers

Answered by maheshtalpada412
4

\tt f(x)=x^3-x^2-5x+3 \quad in [0,4] \). Being a polynomial f(x) is continuous in [0,4] and also derivable in (0,4). Here, \tt f^{\prime}(x)=3 x^2 -2x-5

⟹ Conditions of Lagrange's mean value theorem are satisfied for f(x) in [0,4].

 \color{olive} \begin{aligned} & \tt \Rightarrow \exists c \in(0,4) \\  \\ & \tt f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \\  \\ & \tt=\frac{f(4)-f(0)}{4-0} \\ \\   \Rightarrow & \tt 3 c^{2}-2 c-5=\frac{\left [(4)^{3}-(4)^{2}-5(4)+3\right]}{4} \\  \\ \Rightarrow & \tt 3 c^{2}-2 c-5=\frac{6}{4}+20+3 \\ \\  \Rightarrow & \tt 3 c^{2}-2 c-5=\frac{31}{4} \\ \\  \Rightarrow & \tt 36^{2}-2 c-\frac{51}{4}=0 \\ \\  \Rightarrow & \tt C=\pm \frac{\sqrt{157}}{6}+\frac{1}{3}  \:  \:  \: and \:  \:  \: \exists c \in(0,4)\end{aligned}

Similar questions