Math, asked by goldikthakur, 5 months ago

Verify Rolle's theorem for the function

  \: f(x)= e( \sin \: x -  \cos \: x ) \: on \\  \: (\frac{\pi}{4} \:  \frac{5\pi}{4} )
please don't spam

Answers

Answered by prince5132
36

CORRECT QUESTION :-

★ Verify the rolle's theorem for the function

 \\  \displaystyle \sf \: f(x) = e ^{x} \bigg( \sin x -  \cos x \bigg) \: on \:  \bigg[{\dfrac{\pi}{4} \:  \dfrac{5\pi}{4}} \bigg] \\  \\

TO PROVE :-

  • verify rolle's theorem for the given function.

SOLUTION :-

∵ As we know that the exponential, cosine, sine functions are always continuous and differential in every situation. so we can say that,

\\ : \implies  \displaystyle \sf \: f(x)  \: continuous \: on \: x \in \bigg[{\dfrac{\pi}{4} \:  \dfrac{5\pi}{4}} \bigg] \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bigg   \lgroup Equation \ 1\bigg \rgroup \\  \\  \\

: \implies  \displaystyle \sf \: f(x)  \: differential \: on \: x \in \bigg[{\dfrac{\pi}{4} \:  \dfrac{5\pi}{4}} \bigg] \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bigg   \lgroup Equation \ 2\bigg \rgroup \\  \\

For x = π/4,

 \\ :  \implies \displaystyle \sf \: f(x) = e ^{x} \bigg( \sin x -  \cos x \bigg) \\  \\

 \\ : \implies  \displaystyle \sf \: f \bigg( \dfrac{ \pi}{4} \bigg )  = e ^{x}  \bigg( \sin ^{ \dfrac{ \pi}{4} }  -  \cos ^{  \dfrac{ \pi}{4} }  \bigg) \\  \\  \\

: \implies  \displaystyle \sf \: f \bigg( \dfrac{ \pi}{4} \bigg )  = e ^{ \dfrac{ \pi}{4} }  \bigg( \dfrac{ \sqrt{2} }{2}  -   \dfrac{\sqrt{2} }{2}   \bigg) \\  \\  \\

: \implies  \displaystyle \sf \: f \bigg( \dfrac{ \pi}{4} \bigg )  = e ^{ \dfrac{ \pi}{4} }  \bigg( \dfrac{ \sqrt{2} -  \sqrt{2}  }{2}   \bigg)  \\  \\  \\

: \implies  \displaystyle \sf \: f \bigg( \dfrac{ \pi}{4} \bigg )  = e ^{ \dfrac{ \pi}{4} }  \bigg( \dfrac{ 0 }{2}   \bigg)  \\  \\  \\

: \implies  \displaystyle \sf \: f \bigg( \dfrac{ \pi}{4} \bigg )  = e ^{ \dfrac{ \pi}{4} }  \bigg(0 \bigg)  \\  \\  \\

: \implies  \displaystyle \sf \: f \bigg( \dfrac{ \pi}{4} \bigg )   = 0 \\  \\

For x = 5π/4,

 \\ :  \implies \displaystyle \sf \: f(x) = e ^{x} \bigg( \sin x -  \cos x \bigg) \\  \\

 \\ : \implies  \displaystyle \sf \: f \bigg( \dfrac{ 5\pi}{4} \bigg )  = e ^{x}  \bigg( \sin ^{ \dfrac{5 \pi}{4} }  -  \cos ^{  \dfrac{5 \pi}{4} }  \bigg) \\  \\  \\

: \implies  \displaystyle \sf \: f \bigg( \dfrac{5 \pi}{4} \bigg )  = e ^{ \dfrac{ 5\pi}{4} }  \bigg( \dfrac{5 \sqrt{2} }{2}  -   \dfrac{5\sqrt{2} }{2}   \bigg) \\  \\  \\

: \implies  \displaystyle \sf \: f \bigg( \dfrac{ 5\pi}{4} \bigg )  = e ^{ \dfrac{ 5\pi}{4} }  \bigg( \dfrac{5 \sqrt{2} -  5\sqrt{2}  }{2}   \bigg)  \\  \\  \\

: \implies  \displaystyle \sf \: f \bigg( \dfrac{5 \pi}{4} \bigg )  = e ^{ \dfrac{ 5\pi}{4} }  \bigg( \dfrac{ 0 }{2}   \bigg)  \\  \\  \\

: \implies  \displaystyle \sf \: f \bigg( \dfrac{ 5\pi}{4} \bigg )  = e ^{ \dfrac{ 5\pi}{4} }  \bigg(0 \bigg)  \\  \\  \\

: \implies  \displaystyle \sf \: f \bigg( \dfrac{ 5\pi}{4} \bigg )   = 0 \\  \\

Now we can say that ,

 \\ : \implies  \displaystyle \sf \: f \bigg( \dfrac{ \pi}{4} \bigg )  = f \bigg( \dfrac{5 \pi}{4} \bigg )   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bigg \lgroup Equation \ 3\bigg \rgroup\\  \\

So now we can say that all the the three equations satisfy for the rolle's theorem.

 \\ :  \implies \displaystyle \sf \: f(x) = e ^{x} \bigg( \sin x -  \cos x \bigg) \\

Now differentiate with respect to x in the given function.

:  \implies \displaystyle \sf \: f' (x) = e ^{x} \bigg( \sin x  +   \cos x \bigg)  + e ^{x} \bigg( \sin x -  \cos x \bigg)  \\  \\  \\

:  \implies \displaystyle \sf \: f' (x) = e ^{x} \bigg( \sin x  +   \cos x  +  \sin x -  \cos x\bigg )  \\  \\  \\

:  \implies \displaystyle \sf \: f' (x) = e ^{x}  \bigg(2 \sin x \bigg) \\

Now,

 \\ :  \implies \displaystyle \sf \: f' (x) = 0 \\  \\  \\

:  \implies \displaystyle \sf \:e ^{x}  \bigg(2 \sin x \bigg)  = 0 \\  \\  \\

:  \implies \displaystyle \sf \: \bigg(2 \sin x \bigg)  =  \frac{0}{e ^{x} }  \\  \\  \\

:  \implies \displaystyle \sf \: \bigg(2 \sin x \bigg)   = 0 \\  \\  \\

:  \implies \displaystyle \sf \: \sin x = 0 \\  \\  \\

:  \implies \displaystyle \sf \:x =  \pi   \: \: on \: x \in \bigg[{\dfrac{\pi}{4} \:  \dfrac{5\pi}{4}} \bigg] \\  \\

Hence Verified.


Vamprixussa: Great answer !
Similar questions