verify sin theta-cos theta+1/sin theta +cos theta-1=1/sec theta-tan theta.
Answers
Answered by
3
Answer:
LHS = (sinθ - cosθ + 1)/(sinθ + cosθ - 1)
dividing by cosθ both Num and den
= (sinθ/cosθ - cosθ/cosθ + 1/cosθ)/(sinθ/cosθ + cosθ/cosθ - 1/cosθ)
= (tanθ + secθ - 1)/(tanθ - secθ + 1)
MultiplyIing (tanθ - secθ) with both Num and den
= (tanθ + secθ - 1)(tanθ - secθ)/(tanθ - secθ + 1)(tanθ - secθ)
= {(tan²θ - sec²θ) - (tanθ - secθ)}/(tanθ - secθ + 1)(tanθ - secθ)
= (-1 - tanθ + secθ)/(tanθ - secθ + 1)(tanθ - secθ)
[ ∵ sec²x - tan²x = 1 ]
= -1/(tanθ - secθ)
= 1/(secθ - tanθ)
= RHS
Step-by-step explanation:
Answered by
0
Answer:
Your answer attached in the photo
replace theta by A
Attachments:
Similar questions