Verify :
tanA/1-cotA + cotA/1-tanA =1 + secA cosecA
Answers
Answered by
0
Step-by-step explanation:
TO PROVE
tanA/1-cotA + cotA/1-tanA= 1+secA*cosecA
PROOF
LHS: tanA/1-cotA +cotA/1-tanA
now, tanA=sinA/cosA , cotA = cosA/sinA
sinA/cosA/1-cosA/sinA+ cosA/sinA/1-sinA/cosA
sinA/cosA/sinA-cosA/sinA+cosA/sinA/cosA-sinA/cosA
sin²A/cosA(sinA-cosA)+cos²A/sinA(cosA-sinA)
sin²A/cosA(sinA-cosA) -cos²A/sinA(sinA-cosA)
sin³A-cos³A/cosA×sinA(sinA-cosA)
using a³-b³=(a-b)(a²+b²+ab)
(sinA-cosA)(sin²A+cos²A+sinA×cosA)/cosA×sinA(sinA-cosA)
[(sinA-cosA)/(sinA-cosA) will be divided and =1]
(sin²A+cos²A+sinA×cosA)/sinA×cosA
using sin²A+cos²A= 1
1/sinA×cosA + sinA×cosA/sinA×cosA
[sinA×cosA/sinA×cosA will be 1]
1/sinA×coAs+1
[sinA= 1/cosecA and cosA = 1/secA]
1/1/cosecA×1/secA+1
cosecA×secA+1
also, 1+secA×cosecA=RHS
HENCE PROVED
LHS=RHS
Answered by
0
Similar questions