Math, asked by Est19xx, 3 months ago

verify that (0,7,10),(-1,6,6)and(-4,9,6) are the vertices of a right angled triangle.​

Answers

Answered by aryan073
12

Given :

The vertices of a right angled triangle are,

A=(0,7,10)

B=(-1,6,6)

C=(-4,9,6)

To find :

•To verify that the given points are the vertices of a right angled triangle =?

Formula :

Distance Formula :

\pink\bigstar\boxed{\bf{\sqrt{(y_{2}-y_{1} )^{2}+(x_{2}-x_{1})^{2}+(z_{2}-z_{1})^{2}}}}

Solution :

Let (0,7,10) ,(-1,6,6),(-4,9,6) be denoted by A, B, and C respectively.

\\ \implies\displaystyle\sf{AB=\sqrt{(y_{2}-y_{1})^{2}+(x_{2}-x_{1})^{2} +(z_{2}-z_{1})^{2}}}

\\ \implies\displaystyle\sf{AB=\sqrt{(-1-0)^{2}+(6-7)^{2}+(6-10)^{2} }}

\\ \implies\displaystyle\sf{AB=\sqrt{(-1)^{2}+(-1)^{2}+(-4)^{2}}}

\\ \implies\displaystyle\sf{AB=\sqrt{1+1+16}}

\\ \implies\displaystyle\sf{AB=\sqrt{18}}

\\ \implies\boxed{\displaystyle\sf{AB=3\sqrt{2} }}

\\ \implies\displaystyle\sf{BC=\sqrt{(z_{2}-z_{1})^{2}+(y_{2}-y_{1})^{2}+(x_{2}-x_{1})^{2}}}

\\ \implies\displaystyle\sf{BC=\sqrt{(-4+1)^{2}+(9-6)^{2}+(6-6)^{2} }}

\\ \implies\displaystyle\sf{BC=\sqrt{(-3)^{2}+(3)^{2} }}

\\ \implies\displaystyle\sf{BC=\sqrt{9+9}}

\\ \implies\boxed{\displaystyle\sf{BC=3 \sqrt{2} }}

\\ \implies\displaystyle\sf{CA=\sqrt{(z_{2}-z_{1})^{2}+(y_{2}-y_{1})^{2}+(x_{2}-x_{1})^{2} }}

\\ \implies\displaystyle\sf{CA=\sqrt{(0+4)^{2}+(7-9)^{2}+(10-6)^{2}}}

\\ \implies\displaystyle\sf{CA=\sqrt{(4)^{2}+(-2)^{2}+(4)^{2} }}

\\ \implies\displaystyle\sf{CA=\sqrt{16+4+16}}

\\ \implies\displaystyle\sf{CA=\sqrt{36}}

\\ \implies\boxed{\displaystyle\sf{CA=6}}

Now,

\\ \implies\displaystyle\sf{AB^{2}+BC^{2}=(3\sqrt 2)^{2}+(3 \sqrt 2)^{2} }

\\ \implies\displaystyle\sf{18+18=36=AC^{2} }

Therefore, by Pythagoras theorem ,ABC is a right angled triangle .

Hence ,the given points are the vertices of a right angled triangle .

Similar questions