Math, asked by mznxnxnx, 1 year ago

Verify that -1 is the zero of the cubic polynomial p(x)=3x^3-5x^2-11x-3

Answers

Answered by Anonymous
3
 \huge{ \mathbb{SOLUTION:-}}

\bold{\mathsf{Method\: of \: Solution}}

Required Polynomial:-

3x³-5x²-11x-3

Factor of Polynomial=-1




f(x)=x=1

Hence, Factor=-1

====================================
Substitute the value of Factor in Required Polynomial:-

3x³-5x²-11x-3

f(1)=3(-1)³-5(-1)²-11(-1)-3

-3-5+11-3

-3-5-3)+11

-11+11

0

Here, 0 Shows it is Factor of the Polynomial.
Answered by Divyaalia
3
Hey mate, here is your answer -:)

___________________________

p(x) =  {3x}^{3}  -  {5x}^{2}  - 11x - 3 \\  \\ on \: putting \: x = - 1 \\ \\  p(1) = 3 {( - 1)}^{3}  - 5 {( - 1) }^{2}  - 11( - 1) - 3 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 3( - 1) - 5(1) - 11( - 1) - 3 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  - 3 - 5 + 11 - 3 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  - 11 + 11 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:   = 0 \\  \\  \\ hence \: verified

_________________________

HOPE it helps to you!!!
Similar questions