Math, asked by siddhart8889, 2 days ago

verify that √2 & -√2 are zeros of given polynomial 2x⁴-3x³-3x²+6x-2 .​

Answers

Answered by Anonymous
54

Given :-

  • Polynomial : 2x⁴-3x³-3x²+6x-2

To Find :

  • √2 & -√2 are zeros of given polynomial 2x⁴-3x³-3x²+6x-2 .

Solution:

Given f(x) =  \tt \: 2x⁴ - 3x³ - 3x² + 6x - 2

Let, x = 2

\sf\huge\implies  \tt \: f(x) = 2(√2)⁴ - 3(√2)³ - 3(√2)² + 6(√2) - 2

\sf\huge\implies  \tt \: 2(4) - 6√2 - 3(2) + 6√2 - 2

\sf\huge\implies  \tt \: 8 - 8 = 0

\star When x = -2 ,

\sf\huge\implies  \tt \:  f (-√2) = 2(-√2)⁴  - 3(-√2)³ - 3(-√2)² + 6(-√2) -2

\sf\huge\implies 2(4) +6√2 - 3(2) - 6√2 - 2

\sf\huge\implies 8 - 8 = 0

So, we can say that 2 and -2

are the zeroes of polynomial

2x⁴-3x³-3x²+6x-2

________________________

Note : scroll left to right to see full ans

_________________________

Answered by Anonymous
1

Step-by-step explanation:

Given :-

Polynomial : 2x⁴-3x³-3x²+6x-2

To Find :

√2 & -√2 are zeros of given polynomial 2x⁴-3x³-3x²+6x-2 .

Solution:

Given f(x) = \tt \: 2x⁴ - 3x³ - 3x² + 6x - 22x⁴−3x³−3x²+6x−2

Let, x = √2

\sf\\tt \: f(x) = 2(√2)⁴ - 3(√2)³ - 3(√2)² + 6(√2) -

2f(x)=2(√2)⁴−3(√2)³−3(√2)²+6(√2)−2

\sf\tt \: 2(4) - 6√2 - 3(2) + 6√2 - 22(4)−6√2−3(2)+6√2−2

\sf\tt \: 8 - 8 = 08−8=0

\star⋆ When x = -√2 ,

\sf\tt \: f (-√2) = 2(-√2)⁴ - 3(-√2)³ - 3(-√2)² + 6(-√2)

\sf 2(4) +6√2 - 3(2) - 6√2 - 2

\sf 8 - 8 = 0

So, we can say that √2 and -√2

are the zeroes of polynomial

2x⁴-3x³-3x²+6x-2

Similar questions