Verify that 3 , -1 , -1 /3 are the zeroes of the cubic polynomial
Answers
Given:-
•α(Alpha)=3
•β(Beta)=-1
•γ(Gamma)=-⅓
To Find:-
✪The Cubic Polynomial and Verify its Zeros?
AnsWer:-
▼Using Cubic Formula▼
↝k[x³-(α+β+γ)x²+(αβ+βγ+γα)x-(αβγ)]
•α+β+γ=3+(-1)+(-⅓)
•α+β+γ=3-1-⅓
•α+β+γ=2-⅓→[Take LCM]
•α+β+γ=
•α+β+γ=–(1)
•αβ+βγ+γα=3×(-1)+(-1)×(-⅓)+(-⅓)×3
•αβ+βγ+γα=-3+1+(-1)
•αβ+βγ+γα=-2-1
•αβ+βγ+γα=-3–(2)
•αβγ=3×-1×-⅓
•αβγ=1–(3)
✪Using (1),(2)&(3) in the Formula✪
↝k[x³-(x²+3x-1]
★Let k=3★
↝3[x³-(x²+3x-1]
↝3x³-5x²+9x-3
☞3x³-5x²+9x-3 is the Cubic Polynomial.
♦As The Zeros Form the Cubic Polynomial,It is verified they are the zeros of Cubic Polynomial♦
Answer:
Given:-
•α(Alpha)=3
•β(Beta)=-1
•γ(Gamma)=-⅓
$$\rule{200}{1}$$
To Find:-
✪The Cubic Polynomial and Verify its Zeros?
$$\rule{200}{1}$$
AnsWer:-
▼Using Cubic Formula▼
↝k[x³-(α+β+γ)x²+(αβ+βγ+γα)x-(αβγ)]
•α+β+γ=3+(-1)+(-⅓)
•α+β+γ=3-1-⅓
•α+β+γ=2-⅓→[Take LCM]
•α+β+γ=$$\frac{6-1}{3}$$
•α+β+γ=$$\frac{5}{3}$$ –(1)
•αβ+βγ+γα=3×(-1)+(-1)×(-⅓)+(-⅓)×3
•αβ+βγ+γα=-3+1+(-1)
•αβ+βγ+γα=-2-1
•αβ+βγ+γα=-3–(2)
•αβγ=3×-1×-⅓
•αβγ=1–(3)
✪Using (1),(2)&(3) in the Formula✪
↝k[x³-($$\frac{5}{3}$$ x²+3x-1]
★Let k=3★
↝3[x³-($$\frac{5}{3}$$ x²+3x-1]
↝3x³-5x²+9x-3
☞3x³-5x²+9x-3 is the Cubic Polynomial.
♦As The Zeros Form the Cubic Polynomial,It is verified they are the zeros of Cubic Polynomial♦
$$\rule{200}{2}$$