Verify that 3,-1,-1/3 are the zeroes of the cubic polynomial p(x) = 3x^2 – 5x^2 – 11x – 3 and then verify the relationship between the zeroes and the coefficients.
Answers
Step-by-step explanation:
let p(x)=3
p(3)=3(3)^3-5(3)^2-11(3)-3=0
=81-45-33-3=0
=81-81=0
0=0 hence it is a zero of the polynomial
let p(x)=-1
p(-1)=3(-1)^3-5(-1)^2-11(-1)-3
= -3-5+11-3=0
0=0 hence it is a zero of the polynomial
letp(x)=-1/3
p(-1/3) = 3(-1/3)^3-5(-1/3)^2-11(-1/3)-3
= -1/9-5/9+11/3-3
= -2/3+2/3=0
0=0 hence it is a zero of the polynomial
so,
alpha+beeta+gaama=3+(-1)+(-1/3)=2-1/3=5/3=-(-5)/3=-b/a
alpha×beeta+beeta×gaama+gaama×alpha=3(-1)+(-1)(-1/3)+(-1/3)(3)= -3+1/3-1= -11/3= c/a
alpha×beeta×gaama=3×(-1)×(-1/3)=1=-(-3)/3= -d/a
Hence verified
Hope it helps
Answer:
let p(x)=3,
Then,
p(3)=3(3)^3 -5(3)^2 -11(3) -3=0
=> 81-45-33-3=0
=> 81-81=0
=> 0=0
Hence 3 is a zero of the polynomial
let p(x)=-1,
Then,
p(-1)=3(-1)^3 -5(-1)^2 -11(-1) -3
=> -3-5+11-3=0
=> 0=0
Hence -1 is a zero of the polynomial
Let p(x)=-1/3
Then
p(-1/3) = 3(-1/3)^3 -5(-1/3)^2 -11(-1/3) -3
=> -1/9-5/9+11/3-3
=> -2/3+2/3=0
=> 0=0
Hence -1/3 is a zero of the polynomial
To verify the relationship between the zeroes and the coefficients,
alpha+beta+gamma=3+(-1)+(-1/3)=2-1/3
=5/3
= -(-5)/3=-b/a
alpha×beta+beta×gamma+gamma×alpha=3(-1)+(-1)(-1/3)+(-1/3)(3)
= -3+1/3-1
= -11/3= c/a
alpha×beta×gamma=3×(-1)×(-1/3)=1
=-(-3)/3= -d/a
Hence verified
hope this helps:)