verify that 3,-1,- 1/3 are the zeros of the
polynomial 3x³-5x²-11x-3 and check
the relationship between the zeros of and
Cofficints!
Answers
EXPLANATION.
Verify that 3,-1,-1/3 are the zeroes of the cubic polynomial 3x³ - 5x² - 11x - 3.
Check the relationship between the zeroes and coefficients.
Put the value of x = 3 in equation,
⇒ p(x) = 3x³ - 5x² - 11x - 3.
⇒ p(3) = 3(3)³ - 5(3)² - 11(3) - 3.
⇒ p(3) = 81 - 45 - 33 - 3.
⇒ p(3) = 81 - 81.
⇒ p(3) = 0.
Put the value of x = -1 in equation,
⇒ p(-1) = 3(-1)³ - 5(-1)² - 11(-1) - 3.
⇒ p(-1) = -3 - 5 + 11 - 3.
⇒ p(-1) = 11 - 11.
⇒ p(-1) = 0.
Put the value of x = -1/3 in equation,
⇒ p(-1/3) = 3(-1/3)³ - 5(-1/3)² - 11(-1/3) - 3.
⇒ p(-1/3) = -1/9 - 5/9 + 11/3 - 3.
⇒ p(-1/3) = -1 - 5 + 33 - 27/9.
⇒ p(-1/3) = 33 - 33/9.
⇒ p(-1/3) = 0.
Cubic Polynomial = x³ - (α + β + γ)x² + (αβ + βγ + γα)x - αβγ.
Sum of zeroes of cubic polynomial,
⇒ α + β + γ = -b/a.
⇒ α + β + γ = -(-5)/3 = 5/3.
Product of zeroes of cubic polynomial,
⇒ αβγ = -d/a.
⇒ αβγ = -(-3)/3 = 1.
Product of zeroes of cubic polynomial two at a time,
⇒ αβ + βγ + γα = c/a.
⇒ αβ + βγ + γα = -11/3.
Put it on a equation we get,
⇒ x³ - (5/3)x² + (-11/3)x - 1 = 0.
⇒ 3x³ - 5x² - 11x - 3/3 = 0.
⇒ 3x³ - 5x² - 11x - 3 = 0.
HENCE PROVED.
Let given cubic polynomial be
p(x) = 3x³ - 5x² - 11x - 3
i ) If x = 3 , then
p(3) = 3(3)³ - 5(3)² - 11(3) - 3
= 81 - 45 - 33 - 3
= 81 - 81
= 0
ii ) If x = -1 , then
p(-1) = 3(-1)³ - 5(-1)² - 11(-1) - 3
= -3 - 5 + 11 - 3
= -11 + 11
= 0
iii ) If x = -1/3 , then
p(-1/3) = 3(-1/3)³ - 5(-1/3)² - 11(-1/3) - 3
= -3/27 - 5/9 + 11/3 - 3
= -1/9 - 5/9 + 11/3 - 3
= ( -1 - 5 + 33 - 27 )/9
= ( -33 + 33 )/9
= 0
Therefore ,
p(3) = p(-1) = p(-1/3) = 0 .
So, 3 , -1 , -1/3 are zeroes of given
cubic polynomial 3x³ - 5x² - 11x - 3 .
Compare the coefficients of given
cubic polynomial 3x³ - 5x² - 11x - 3
with ax³ + bx² + cx + d , we get
a = 3 , b = -5 , c = -11 , d = -3
Let the zeroes of the given cubic
polynomial p(x) are p =3 , q=-1, r=-1/3
Now ,
p+q+r = 3 - 1 - 1/3
= 2 - 1/3
= ( 6 - 1 )/3
= 5/3
= -b/a
pq+qr+rp
= 3(-1)+(-1)(-1/3)+(-1/3)(3)
= -3 + 1/3 - 1
= -4 + 1/3
= ( -12 + 1 )/3
= -11/3
= c/a
pqr = 3 × ( -1 ) × ( -1/3 )
= 1
=- d/a
•••••