verify that 3,-1,-1/3are the zeroes of the cubuc polynomial p(x)=3x3-5x2-11x-3
Answers
Answered by
5
Answer: It will help u...
pls mark as brainliest and follow me
ax^{3} +bx^{2} +cx+d
Where, a,b,c,d are coefficients
Let p,q and r are the zeros of the polynomial.
Then, p+q+r= -b/a
And, pqr= -d/a
pq+qr+rp = c/a
i)3x^{3} -5x^{2} -11x-3
3*3^{3} -5*3^{2} -11*3-3
81-45-33-3=81-81=0
3*(-1)^{3} -5*(-1)^{2} -11*(-1)-3
-3-5+11-3=11-11=0
3*(-1/3)^{3} -5*(-1/3)^{2} -11*(-1/3)-3
\frac{-1}{9 } -\frac{5}{9} +\frac{11}{3} -3=-\frac{2}{3} +\frac{11}{3}-3=3-3=0
Verified.
Now,p+q+r= 3-1-(1/3)=5/3=-b/a
pqr= 3*-1*(-1/3)=1=-d/a
pq+qr+rp= 3*(-1)+(-1)*(-1/3)+(-1/3)*(3)=-11/3=c/a
Hence,verified
Hope it helps
Thanks
With Regards
Step-by-step explanation:
Similar questions