Math, asked by kanishq3012, 9 months ago

Verify that 3, -1 and −1 3 , are zeroes of the polynomial p(x) = 3x3 – 5x2 – 11x – 3. Then, verify the relationships between the zeroes and its coefficients

Answers

Answered by Anonymous
3

Answer:

p(x)= 3(3)³- 5(3)² - 11(3) - 3

p(x)= 27 - 45- 33 -3

p(x)= 0

||| ly check for other two values

Answered by ItzRadhika
8

SOLUTION:-

Given

p(x) =3x³-5x²-11x-3

Explanation

p(x) = 3x³-5x²-11x-3

putting x= 3

p(3)= 3×(3)³-5×(3)²-11×3-3

= 3×27-5×9-33-3

= 81-45-33-3

=81-81

=0

p(x) = 3x³-5x²-11x-3

Putting x= -1

p(-1)= 3×(-1)³-5×(-1)²-11×(-1)-3

= 3×(-1)-5×1+11-3

=-3-5+11-3

=-11+11

=0

p(x) = 3x³-5x²-11x-3

putting x= -1/3

p(-1/3)= 3×(-1/3)³-5×(-1/3)²-11×(-1/3)-3

= 3×(-1/27)-5×1/9+11/3-3

= -1/9-5/9+11/3-3

= -1-5+33-27 / 9

= -33+33 / 9

= 0

Relation between zeros and coefficients

 \alpha  +  \beta  +  \gamma  =  \frac{ - b}{a}  \\  \\  = 3 + ( - 1) + ( \frac{ - 1}{3} ) =   \frac{ - ( - 5)}{3}  \\  \\  = 3 - 1 -  \frac{1}{3}  =  \frac{5}{3}  \\  \\  =  \frac{9 - 3 - 1}{3}  =  \frac{5}{3}  \\ \\   =  \frac{9 - 4}{3}  =  \frac{5}{3}  \\  \\  =  \frac{5}{3}  =  \frac{5}{3}

 \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =  \frac{c}{a}  \\  \\  = 3 \times ( - 1) + ( - 1) \times  \frac{ - 1}{3}  + ( \frac{ - 1}{3} \times 3) =  \frac{ -  11}{3}  \\  \\  =  - 3 +  \frac{1}{3}  -  \frac{3}{3}  =  \frac{ - 11}{3}  \\  \\  =  \frac{ - 9 + 1 - 3}{3}  =  \frac{ - 11}{3}  \\  \\  =  \frac{ - 11}{3}  =  \frac{ - 11}{3}

 \alpha  \beta  \gamma  =  \frac{ - d}{a}  \\  \\  = 3 \times ( - 1) \times  \frac{1}{3}  =  \frac{ - 3}{3}  \\  \\  =  \frac{ - 3}{3}  =  \frac{ - 3}{3}

Hence verified!!!

Similar questions