Math, asked by ananya8516, 3 months ago

Verify that 3, -1 and -⅓ are the zeroes of the cubic polynomial p(x) = 3x3 - 5x2 -11x - 3 and also verify the relation between the zeroes and coefficients​

Answers

Answered by StormEyes
4

\sf \Large Solution!!

\sf \longrightarrow x=3

\sf \to p(x)=3x^{3}-5x^{2}-11x-3

\sf \to p(3)=3(3)^{3}-5(3)^{2}-11(3)-3

\sf \to \;\;=81-45-33-3

\sf \to p(3)=0\;\big(3\: is\:a\:zero\:of\:p(x)\big)

____________________________

\sf \longrightarrow x=-1

\sf \to p(x)=3x^{3}-5x^{2}-11x-3

\sf \to p(-1)=3(-1)^{3}-5(-1)^{2}-11(-1)-3

\sf \to \;\;=-3-5+11-3

\sf \to p(-1)=0\;\big(-1\: is\:a\:zero\:of\:p(x)\big)

____________________________

\sf \longrightarrow x=\dfrac{-1}{3}

\sf \to p(x)=3x^{3}-5x^{2}-11x-3

\sf \to p\bigg(\dfrac{-1}{3}\bigg)=3\bigg(\dfrac{-1}{3}\bigg)^{3}-5\bigg(\dfrac{-1}{3}\bigg)^{2}-11\bigg(\dfrac{-1}{3}\bigg)-3

\sf \to \;\;=\dfrac{-1}{9}-\dfrac{5}{9}+\dfrac{11}{3}-3

\sf \to \;\;=\dfrac{-1-5+33-27}{9}

\sf \to \;\;=\dfrac{0}{9}

\sf \to p\bigg(\dfrac{-1}{9}\bigg)=0\;\bigg(\dfrac{-1}{3}\:is\:a\:zero\:of\:p(x)\bigg)

____________________________

\sf \large Verification\:of\:relation\:between\:zeros\:and\:coefficients

\sf \to p(x)=ax^{3}+bx^{2}+cx+d

\sf \to For\:p(x)=3x^{3}-5x^{2}-11x-3,

\sf \to a=3

\sf \to b=-5

\sf \to c=-11

\sf \to d=-3

\sf Zeroes:

\sf \to \alpha =3

\sf \to \beta =-1

\sf \to \gamma =\dfrac{-1}{3}

\sf We\:have,

\sf \longrightarrow \alpha +\beta +\gamma=\dfrac{-b}{a}

\sf \to (3)+(-1)+\bigg(\dfrac{-1}{3}\bigg)

\sf \to \dfrac{9-3-1}{3}

\sf \to \dfrac{5}{3}\:or\:\bold{\dfrac{-(-5)}{3}}=\dfrac{-b}{a}

\sf

\sf \longrightarrow \alpha \beta +\beta \gamma+\gamma \alpha =\dfrac{c}{a}

\sf \to (3)(-1)+(-1)\bigg(\dfrac{-1}{3}\bigg)+\bigg(\dfrac{-1}{3}\bigg)(3)

\sf \to -3+\dfrac{1}{3}-\dfrac{3}{3}

\sf \to \dfrac{-9+1-3}{3}

\sf \to \bold{\dfrac{-11}{3}}=\dfrac{c}{a}

\sf

\sf \longrightarrow \alpha \beta \gamma =\dfrac{-d}{a}

\sf \to (3)(-1)\bigg(\dfrac{-1}{3}\bigg)

\sf \to \dfrac{3}{3}\:or\:\bold{\dfrac{-(-3)}{3}}=\dfrac{-d}{a}

Similar questions
Math, 1 month ago