Math, asked by khushi966, 1 year ago

verify that 5, -2, 1/3 are the zeroes of cubic polynomial 3x cube - 10x square - 27x +10 and verify the relationship between its zeroes and coefficients

Answers

Answered by ashishks1912
26

GIVEN :

Verify that 5, -2,  are the zeroes of cubic polynomial  and verify the relationship between its zeroes and coefficients

TO FIND :

That 5, -2,  are the zeroes of cubic polynomial  and relationship between the given zeroes and coefficients

SOLUTION :

Given that cubic polynomial is  3x^3- 10x^2- 27x +10

Let p(x) be the given cubic polynomial.

p(x)=3x^3- 10x^2- 27x +10

Now we have to verify that 5, -2, \frac{1}{3} are the zeroes of cubic polynomial p(x) :

Put x=5 in p(x)

p(5)=3(5)^3- 10(5)^2- 27(5) +10

=3(125)-10(25)-135+10

=375-250-135+10

=385-385

=0

⇒ p(5)=0

∴ 5 is a zero of p(x).

Put x=-2 in p(x)

p(-2)=3(-2)^3- 10(-2)^2- 27(-2) +10

=3(-8)-10(4)+54+10

=-24-40+54+10

=64-64

=0

⇒ p(-2)=0

∴ -2 is a zero of p(x).

Put x=\frac{1}{3} in p(x)

p(\frac{1}{3})=3(\frac{1}{3})^3- 10(\frac{1}{3})^2- 27(\frac{1}{3}) +10

=\frac{1}{9}-\frac{10}{9}-9+10

=-\frac{9}{9}+1

=-1+1

=0

p(\frac{1}{3})=0

\frac{1}{3} is a zero of p(x).

Hence 5, -2, \frac{1}{3} are the zeroes of cubic polynomial p(x) is verified.

Now verify the relationship between the given zeroes and coefficients  :

For a cubic polynomial p(x)=ax^3+bx^2+cx+d with the zeroes \alpha , \beta and \gamma we have,

i) \alpha+\beta+\gamma=\frac{-b}{a}

ii) \alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}

iii) \alpha \beta \gamma=\frac{-d}{a}

For p(x)=3x^3- 10x^2- 27x +10

5, -2, \frac{1}{3} are the zeroes of cubic polynomial p(x)

Let \alpha=5 , \bet-2 and \gamma=\frac{1}{3}

Here a=3 , b=-10 , c=-27 and d=10

Substitute the values in the formulae  we get,

i) \alpha+\beta+\gamma=\frac{-b}{a}

5+(-2)+\frac{1}{3}=\frac{-(-10)}{3}

3+\frac{1}{3}=\frac{10}{3}

\frac{9+1}{3}=\frac{10}{3}

\frac{10}{3}=\frac{10}{3}

LHS=RHS

\alpha+\beta+\gamma=\frac{-b}{a}

ii) \alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}

5(-2)+(-2)(\frac{1}{3})+(\frac{1}{3})(5)=\frac{-27}{3}

-10-\frac{2}{3})+\frac{5}{3}=-9

-10+\frac{3}{3}=-9

-10+1=-9

-9=-9

LHS=RHS

\alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}

iii) \alpha \beta \gamma=\frac{-d}{a}

5(-2)(\frac{1}{3})=\frac{-10}{3}

\frac{-10}{3}=\frac{-10}{3}

LHS=RHS

\alpha \beta \gamma=\frac{-d}{a}

Hence the relationship between the given zeroes and coefficients is verified.

Answered by hpbrossoundsashwin
3

Answer:

here is your answer

Step-by-step explanation:

p(x) = (3x3 – 10x2 – 27x +verify-that-5-2-and-1-3-are-the-zeroes-of-the-cubic-polynomial-p-x-3x-3-10x-2-27x-10

Similar questions