verify that 5,-2 and 1/3 are the zeros of the cubic polynomial p(x)=3x^3-10x^2 -27x +10 and verify the relation between its zeroes and coefdicients .
Answers
Answer :-
We have :-
→ p(x) = 3x³ - 10x² - 27x + 10
→ It's zeroes are 5, -2 and 1/3 .
________________________________
5, -2 and 1/3 will be the zeroes of p(x) if p(5) = 0 ; p(-2) = 0 ; p(1/3) = 0.
⇒ p(5) = 3(5)³ - 10(5)² - 27(5) + 10
⇒ p(5) = 375 - 250 - 135 + 10
⇒ p(5) = 0
⇒ p(-2) = 3(-2)³ - 10(-2)² - 27(-2) + 10
⇒ p(-2) = -24 - 40 + 54 + 10
⇒ p(-2) = 0
⇒ p(1/3) = 3(1/3)³ - 10(1/3)² - 27(1/3) + 10
⇒ p(1/3) = 1/9 - 10/9 - 9 + 10
⇒ p(1/3) = 0
So, 5, -2 and 1/3 are the zeroes of p(x) .
________________________________
If we compare p(x) with ax³ + bx² + cx + d , we get :-
→ a = 3 ; b = -10 ; c = -27 ; d = 10
Let , α = 5 ; β = -2 ; γ = 1/3 .
⇒ (α + β + γ) = [5 + (-2) + 1/3]
⇒ (α + β + γ) = [(15 - 6 + 1)/3]
⇒ (α + β + γ) = 10/3
⇒ (α + β + γ) = -b/a
⇒ (αβ + βγ + γα) = [5(-2) + (-2)(1/3) + 1/3(5)]
⇒ (αβ + βγ + γα) = [-10 - 2/3 + 5/3]
⇒ (αβ + βγ + γα) = [(-30 - 2 + 5)/3]
⇒ (αβ + βγ + γα) = -27/3
⇒ (αβ + βγ + γα) = c/a
⇒ (αβγ) = 5(-2)(1/3)
⇒ (αβγ) = -10/3
⇒ (αβγ) = -d/a
Given :-
3x³ - 10x² - 27x + 10
To Find :-
Relation between its zeroes and coefdicients .
Solution :-
First we will put the value of x in the equation and if the result come 0. Then, it will be a zero or more or less than 0 then, it is not a zero
For 5
p(x) = 3x³ - 10x² - 27x + 10
0 = 3(5)³ - 10(5)² - 27(5) + 10
0 = 3(125) - 10(25) - 135 + 10
0 = 375 - 250 - 135 + 10
0 = 385 - 385
0 = 0
For -2
p(x) = 3x³ - 10x² - 27x + 10
0 = 3(-2)³ - 10(-2)² - 27(-2) + 10
0 = 3(-8) - 10(4) - (-54) + 10
0 = -24 - 40 + 54 + 10
0 = -64 + 64
0 = 0
For 1/3
p(x) = 3x³ - 10x² - 27x + 10
0 = 3(1/3)³ - 10(1/3)² - 27(1/3) + 10
0 = 3 × 1/27 - 10 × 1/9 - 27 × 1/3 + 10
0 = 3/27 - 10/9 - 27/3 + 10
0 = 0
Now
αβγ = -(b)/a
5 + (-2) + 1/3 = -(-10)/3
5 - 2 + 1/3 = 10/3
15 - 6 + 1/3 = 10/3
10/3 = 10/3
Verified
αβ + βγ + γα = c/a
(5)(-2) + (-2)(1/3) + (1/3)(5) = -27/3
-10 + (-2/3) + (5/3) = -9
-10 - 2/3 + 5/3 = -9
-30 - 2 + 5/3 = -9
-32 + 5/3 = -9
-27/3 = -9
-9 = -9
Verified
αβγ = -(d)/a
(5)(-2)(1/3) = -(10)/3
-10 × 1/3 = -10/3
-10/3 = -10/3
Verified