Math, asked by nikki386, 1 year ago

verify that [(729)-5/3]-1/2=(729) - 5/3*(-1/2)

Answers

Answered by PADMINI
175
Question -

 ({(729)}^{ \frac{ - 5}{3} } ) ^{ \frac{ - 1}{2} }  =  {(729)}^{ \frac{ - 5}{3} \times  \frac{ - 1}{2}  }


Answer -

LHS -

 ({(729)}^{ \frac{ - 5}{3} })^{ \frac{ - 1}{2} }

we \: know \:    ({a}^{m} ) ^{n}  =  {a}^{mn}


(729) ^{ \frac{5}{6} }


729 =  {3}^{6}

 ({3}^{6}) ^{ \frac{5}{6} }

 {3}^{5}  = 243


_____________________________________


RHS -


(729)  ^{ \frac{ - 5}{3} \times  \frac{ - 1}{2}  }

(729) ^{ \frac{5}{6} }

729 =  {3}^{6}


( {3}^{6} ) ^{ \frac{5}{6} }

 {3}^{5}  = 243


Hence :


Verified : LHS = RHS .
Answered by erinna
43

Answer:

Step-by-step explanation:

According to the power property of exponent

(a^m)^n=a^{mn}

The given equation is

[(729)^{-\frac{5}{3}}]^{-\frac{1}{2}}=(729)^{-\frac{5}{3}\times (-\frac{1}{2})}

We need to prove that LHS=RHS.

LHS=[(729)^{-\frac{5}{3}}]^{\frac{1}{2}}

LHS=[(3^6)^{-\frac{5}{3}}]^{\frac{1}{2}}

Using the power property of exponent, we get

LHS=[(3^6\times (-\frac{5}{3}})]^{\frac{1}{2}}

LHS=(3^{-10})^{\frac{1}{2}}

Using the power property of exponent, we get

LHS=3^{(-10)\times \frac{1}{2}}

LHS=3^{5}

LHS=243

Now, solve RHS of the given equation.

RHS=(729)^{-\frac{5}{3}\times (-\frac{1}{2})}

RHS=(729)^{\frac{5}{6}}

RHS=(3^6)^{\frac{5}{6}}

Using the power property of exponent, we get

RHS=3^{6\times\frac{5}{6}}

RHS=3^5

RHS=243

So, we get

LHS=RHS

Hence proved.

Similar questions