verify that | a × b | = | a | × | b | if a= 2/-5 , b = 3/4
Answers
Given:
To verify:
Solution:
Let us first solve for L. H. S.
Now, let us solve for R. H. S.
L. H. S.
Since L. H.S. = R. H. S.
The absolute value of a number is never negative.
Answer:
Given:
a = \frac{2}{ - 5}a=
−5
2
b = \frac{3}{4}b=
4
3
To verify:
|a \times b| = |a| \times |b|∣a×b∣=∣a∣×∣b∣
Solution:
Let us first solve for L. H. S.
\longrightarrow{\green{}}⟶ |a \times b|∣a×b∣
\longrightarrow{\green{}}⟶ | \frac{2}{ - 5} \times \frac{3}{4} |∣
−5
2
×
4
3
∣
\longrightarrow{\green{}}⟶ | \frac{6}{ - 20} |∣
−20
6
∣
\longrightarrow{\green{}}⟶ | \frac{3}{ - 10} |∣
−10
3
∣
\longrightarrow{\green{}}⟶ \frac{3}{10}
10
3
Now, let us solve for R. H. S.
\longrightarrow{\green{}}⟶ |a| \times |b|∣a∣×∣b∣
\longrightarrow{\green{}}⟶ | \frac{2}{ - 5} | \times | \frac{3}{4} |∣
−5
2
∣×∣
4
3
∣
\longrightarrow{\green{}}⟶ \frac{2}{5} \times \frac{3}{4}
5
2
×
4
3
\longrightarrow{\green{}}⟶ \frac{6}{20}
20
6
\longrightarrow{\green{}}⟶ \frac{3}{10}
10
3
\longrightarrow{\green{}}⟶ L. H. S.
Since L. H.S. = R. H. S.
\boxed{ Hence \:verified. }
Henceverified.
\sf\purple{Note:}Note: The absolute value of a number is never negative.