Math, asked by Anonymous, 7 months ago

Verify that a / (b+c) ≠(a/b) + (a/c)for each of the following values of a,band c a = 4 , b= -3 ,c = 5

Answers

Answered by kartikChhabra
1

Step-by-step explanation:

FIRST OF ALL WE TAKE LEFT HAND SIDE

a(b+c)........ (equation 1)

a=4 b= -3 c=5

put the value of a,b,c in equation 1

= 4/(-3+5)

= 4/2

= 2............(equation u)

SECOND WE TAKE RIGHT HAND

SIDE

(a/b)+(a/c).........(equation 2)

= (4/-3)+(4/5)

= (-20+12)/15

= -8/15.........(equation v)

EQUATION V DOESN'T EQUALS TO

EQUATION V

AND

a/(b+c)doesn't equal to (a/b)+(a/c)

ANSWER

Answered by Anonymous
1

 \tt{  a \div (b + c) \not = (a \div b) + (a \div c)}

\tt{now\:put\:the\:values\:for\:a,b\:and\:c}

 \tt{4 \div ( - 3 + 5) \not =  (4 \div  - (3)) + (4 \div 5)}

 \tt{ calculate \: the \: sum}

 \tt{4 \div  \red2 \not =  (4 \div  - (3)) + (4 \div 5)}

 \small{ \tt divide \: a \: positive \: and \: a \: negative \: equals \: a \: negative} \ratio( + ) \div ( - ) = ( - )

 \tt{4 \div  2 \not =  ( \red - 4 \div  3+ (4 \div 5)}

 \tt write \: {\orange {\underline{divison \: as \: a \: fraction.}}}

</p><p>⬇⬇⬇⬇⬇⬇

 \tt4 \div  2 \not = (   \red{ \frac{ - 4}{3}} ) + (4 \div 5)

 \tt divide \: no.

 \tt ⬇⬇⬇⬇⬇

 \tt4 \div  2 \not = (   \frac{ - 4}{3} ) +  \red{0.8}

 \tt \red{ 4 \div  2 }\not = (   \frac{ - 4}{3} ) +  {0.8}

 \tt divide \: no.

 \tt ⬇⬇⬇⬇⬇

 \tt \red{2 }\not = (   \frac{ - 4}{3} ) +  {0.8}

4 \div 2  \not =  \red ( -  \frac{4}{3} \red) + 0.8

 \tt remove \: unnecessary \: parenthless

 \tt ⬇⬇⬇⬇⬇

4 \div 2  \not =   -  \frac{4}{3} + 0.8

 \tt convert \: decimal \: no. \: into \: a \:   \underline \orange{fraction.}

 \tt ⬇⬇⬇⬇⬇

2  \not =   -  \frac{4}{3} +  \frac{4}{5}

2  \not =  \red{   -  \frac{4}{3} +  \frac{4}{5} }

 \tt{calculate \: sum}

2  \not=  \red{ \frac{ - 8}{15} }

 \tt{here \: l.h.s \: not \: equal \: to \: r.h.s}

Hence Verified

Similar questions