Math, asked by asjaya3551, 4 months ago

Verify that a÷(b+c) = (a÷b) +(a÷c) for each of the following values of a, b and c where a =12 ,b = -4 , C = 2.

Answers

Answered by anurag2147
0

a÷(b+c) = (a÷b) +(a÷c)

a/(b+c) = a/b + a/c

12/-2 = 12/-4 + 12/2

-6 = -3 +6

-6 = 3

here LHS is not equal to RHS

hence this equation is wrong

Answered by WaterPearl
38

Question

Verify that a ÷ (b + c) ≠ (a ÷ b) + (a ÷ c) for each of the following values of a,b and c. a = 12,b = 4,c = 2.

Given

  • a ÷ (b + c) ≠ (a ÷ b) + (a ÷ c)

a = 12,b = 4,c = 2.

\\

{ \underline{\large{ \bf{Putting \: the \: given \: values \: in \: L.H.S}}}}

\dashrightarrow{ \sf{ = 12 \div ( - 4 + 2)}} \\  \\  \dashrightarrow{ \sf{ = 12 \div ( - 2) = 12 \div}} { \huge{[}} { \sf{ \dfrac{ - 1}{2}}} { \huge{]}} \\  \\  \sf{ =  \dfrac{ - 12}{2}  =  - 6}

\\

{ \underline{\large{ \bf{Putting \: the \: given \: values \: in \: R.H.S}}}}

 \dashrightarrow \sf{[12 \div ( - 4)] + (12 \div 2)} \\  \\

 \sf{ = { \huge{(}} \sf{12 \times  \dfrac{ - 1}{4}{ \huge{)}}}} \sf{ \div 6 = 3 + 6 = 3}

\\

 \mathcal{Since,} L.H.S ≠ R.H.S.

\\

 { \underline{\bf{Hence \: Verified}}}

Similar questions