Math, asked by navjotsinghmann159, 7 months ago

Verify that (a + b) + c = a + (b + c) by taking​

Attachments:

Answers

Answered by namratarathi990
2

Answer:

hope it will be helpful for you

Attachments:
Answered by Anonymous
1

\sf\blue{\underline{✯ Given :-}}

  • \tt {a} = \frac{-9}{11}
  • \tt {b} = \frac{3}{-5}
  • \tt {c} = \frac{-9}{22}

\sf\pink{\underline{✯To \: find  :-}}

  • Verification of the equation :-

(a + b) + c = a + (b + c)

\sf\orange{\underline{✯ Solution :-}}

  • Taking the equation (a + b) + c as R.H.S and the equation a + (b + c) as L.H.S

Now,

\sf\bold\green{\underline{✯ Calculation \: for \: the \: first \: equation :-}}

 \tt \:{ \underline{ \boxed { \blue{a + (b + c)}}}}   \\  \tt =  \frac{ - 9}{11}  + ( \frac{ - 3}{ 5}  +  \frac{ - 9}{22} ) \\  \tt \:  =  \frac{ - 9}{11}  + ( \frac{ - 66 + ( - 45)}{110} )  \\  \tt =  \frac{ - 9}{11}  + ( \frac{ - 66 - 45}{110} )  \\  \tt =  \frac{ - 9}{11}  +  \frac{ - 111}{110}  \\  \tt =  \frac{ - 90 + ( - 111)}{110}  \\  \tt =  \frac{ - 90 - 111}{110}  \\  \tt =   { \blue \bigstar{ \underline{ \boxed{\frac{ - 201}{110}}}}}{ \blue \bigstar}

\sf\bold\green{\underline{✯ Calculation \: for \: the \: second \: equation :-}}

 \tt { \underline{ \boxed{ \orange{(a + b) + c}}}} \\  \tt \:  = ( \frac{ - 9}{11}  +  \frac{ - 3}{5} ) +  \frac{ - 9}{22}  \\  \tt =  {\frac{ - 45+ ( - 33)}{55}} +  \frac{ - 9}{22}  \\  \tt =  \frac{ - 45 - 33}{55}  +  \frac{ - 9}{22}  \\  \tt =  \frac{ - 78}{55}  +  \frac{ - 9}{22}  \\  \tt =  \frac{ - 156 + ( - 45)}{110}  \\  \tt =  \frac{ - 156 - 45}{110}  \\ { \orange \bigstar{ \underline{ \boxed{ \tt =  \frac{- 201}{110} }}}}{ \orange \bigstar}

  • As observation we have solved the both equation and got the same results i.e., \sf {\bold{ \frac{-201}{110}}}

\bf{\underline{\boxed{\therefore \bf L.H.S = R.H.S}}}

  \mathfrak { \underline{\boxed{ \green{ \sf ✧Hence,  \purple   V \red e \orange r \pink f  \blue i  \green e \blue d:  -}}}}

Similar questions