Math, asked by pjunu19, 1 year ago

verify that a cube plus b cube equal to a + b whole into a square minus a b + b square

Answers

Answered by Anonymous
45
<b>Answer :

to \: prove =  >  {a}^{3}  +  {b}^{3} = (a + b)( {a}^{2}   +  {b}^{2}  - ab) \\  \\  =  >  {a}^{3}  +  {b}^{ 3}  = a( {a}^{2}  +  {b}^{2}  - ab)  + b( {a}^{2}  +  {b}^{2}  - ab)\\  \\  =  >  {a}^{ 3}  +   {b}^{3}  = a \times  {a}^{2}  + a \times  {b}^{2}    + a \times  - ab + b \times  {a}^{2}  + b \times  {b}^{2}  + b \times  - ab \\  \\  =  >  {a}^{3}  +  {b }^{ 3}  =  {a}^{3}  + a  {b}^{2}  -  {a}^{2} b +  {a}^{2} b +  {b}^{3}  - a {b}^{2}  \\  \\ cancelling \: the  \: similar\: terms \: with \: opposite \: signs \\  \\  =  >  {a}^{3}  +  {b}^{3}  =  {a}^{3}  +  {b}^{3}



\color{brown}\underline\textbf{Hence, proved. }

Tysm for the question!

pjunu19: your answer is totally wrong but without seeing your answer i thanked you
Anonymous: It is correct dear, I've proved it
pjunu19: means your answer is write for you because you couldn't understand it properly
pjunu19: I have told you to say how it was a+b*a squar.........................................
pjunu19: please tell
Answered by Shubhendu8898
36
We know that,

(a+b)³ = (a+b)²(a+b)

(a+b)³ = (a² + b² + 2ab)(a+b)

(a+b)³ = a(a² + b² + 2ab) +b(a² + b² + 2ab)

(a+b)³ = a³ + ab² + 2a²b + a²b + b³ +2ab²

(a+b)³ = a³ + b³ + 3ab² + 3a²b

We have find a³ + b³. therefore, transfer other terms to one side:

(a+b)³ - 3a²b - 3a²b = a³ + b³

a³ + b³ = (a+b)³ - 3a²b - 3a²b

a³ + b³ = (a+b)³ -3ab(a+b)

Taking (a+b) common,

a³ + b³ = (a+b){(a+b)² -3ab}

a³ + b³ = (a+b){a² + b² + 2ab -3ab}

a³ + b³ = (a+b)(a² + b² - ab)

Hence proved;

Note:-
(a+b)² = (a+b)(a+b)
= a(a+b) +b(a+b)
= a² + ab + ba + b²
= a² + b² + 2ab


Similar questions