verify that a cube plus b cube equal to a + b whole into a square minus a b + b square
Answers
Answered by
45
Answer :
Tysm for the question!
Tysm for the question!
pjunu19:
your answer is totally wrong but without seeing your answer i thanked you
Answered by
36
We know that,
(a+b)³ = (a+b)²(a+b)
(a+b)³ = (a² + b² + 2ab)(a+b)
(a+b)³ = a(a² + b² + 2ab) +b(a² + b² + 2ab)
(a+b)³ = a³ + ab² + 2a²b + a²b + b³ +2ab²
(a+b)³ = a³ + b³ + 3ab² + 3a²b
We have find a³ + b³. therefore, transfer other terms to one side:
(a+b)³ - 3a²b - 3a²b = a³ + b³
a³ + b³ = (a+b)³ - 3a²b - 3a²b
a³ + b³ = (a+b)³ -3ab(a+b)
Taking (a+b) common,
a³ + b³ = (a+b){(a+b)² -3ab}
a³ + b³ = (a+b){a² + b² + 2ab -3ab}
a³ + b³ = (a+b)(a² + b² - ab)
Hence proved;
Note:-
(a+b)² = (a+b)(a+b)
= a(a+b) +b(a+b)
= a² + ab + ba + b²
= a² + b² + 2ab
(a+b)³ = (a+b)²(a+b)
(a+b)³ = (a² + b² + 2ab)(a+b)
(a+b)³ = a(a² + b² + 2ab) +b(a² + b² + 2ab)
(a+b)³ = a³ + ab² + 2a²b + a²b + b³ +2ab²
(a+b)³ = a³ + b³ + 3ab² + 3a²b
We have find a³ + b³. therefore, transfer other terms to one side:
(a+b)³ - 3a²b - 3a²b = a³ + b³
a³ + b³ = (a+b)³ - 3a²b - 3a²b
a³ + b³ = (a+b)³ -3ab(a+b)
Taking (a+b) common,
a³ + b³ = (a+b){(a+b)² -3ab}
a³ + b³ = (a+b){a² + b² + 2ab -3ab}
a³ + b³ = (a+b)(a² + b² - ab)
Hence proved;
Note:-
(a+b)² = (a+b)(a+b)
= a(a+b) +b(a+b)
= a² + ab + ba + b²
= a² + b² + 2ab
Similar questions