Math, asked by ap275230, 1 year ago

Verify that question ​

Attachments:

Answers

Answered by Sharad001
85

Question :-

Verify it .

 \sf4 { \cot}^{2} 30 \degree + 9 { \sin}^{2} 60 \degree  - 6 { \csc}^{2} 60 \degree -  \frac{9}{4}  { \tan}^{2}60 \degree = 4 \\

Used values :-

 \star \:  \cot30 \degree =  \sqrt{3}  \\  \\  \star \sin60 \degree =  \frac{ \sqrt{3} }{2}  \\  \\  \star \:  \csc60 \degree =  \frac{2}{ \sqrt{3} }  \\  \\  \star \tan60 \degree =  \sqrt{3}

Explanation :-

We have ,

 \sf4 { \cot}^{2} 30 \degree + 9 { \sin}^{2} 60 \degree  - 6 { \csc}^{2} 60 \degree -  \frac{9}{4}  { \tan}^{2}60 \degree \:  \\   \\  \rightarrow \: 4 { ({ \sqrt{3} }) }^{2}  + 9 {(  \frac{ \sqrt{3} }{2}) }^{2}  - 6 {( \frac{2}{ \sqrt{3} }) }^{2}  -  \frac{9}{4}  {( \sqrt{3} )}^{2}  \\  \\  \rightarrow 12  +  \frac{9 \times 3}{4}  -  \frac{6 \times 4}{3}  -  \frac{9 \times 3}{4}  \\  \\  \rightarrow \:  \:12  -  \frac{24}{3}  \\  \\  \rightarrow \:  \frac{36 - 24}{3}  \\  \\  \rightarrow \:  \frac{12}{3}  = 4

hence verified.

Similar questions