Math, asked by talpadadilip417, 5 days ago

Verify that \tt y=\dfrac{a}{x}+b is a solution of the differential equation
 \boxed{ \red{ \pmb{ \tt \dfrac{d^{2} y}{d x^{2}}+\dfrac{2}{x}\left(\dfrac{d y}{d x}\right)=0 }}}

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given curve is

\rm \: y=\dfrac{a}{x}+b  \\

can be rewritten as

\rm \: y = \dfrac{a + bx}{x}  \\

\rm \: xy = bx + a \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}xy = \dfrac{d}{dx}(bx + a) \\

We know,

\boxed{\sf{  \:\rm \: \dfrac{d}{dx}uv \:  =  \: v\dfrac{d}{dx}u \:  +  \: u\dfrac{d}{dx}v \:  \: }} \\

and

\boxed{\sf{  \:\rm \: \dfrac{d}{dx}x \:  =  \: 1 \: }} \:  \:  \rm \:  \: and \:  \: \boxed{\sf{  \:\rm \: \dfrac{d}{dx}k = 0 \:  \: }} \\

So, using these results, we get

\rm \: x\dfrac{dy}{dx} + y\dfrac{d}{dx}x = b \times 1 + 0 \\

\rm \: x\dfrac{dy}{dx} + y = b\\

Again, on differentiating both sides w. r. t. x, we get

\rm \:\dfrac{d}{dx}\bigg( x\dfrac{dy}{dx} + y\bigg) =\dfrac{d}{dx} b\\

\rm \: x\dfrac{d}{dx}\bigg(\dfrac{dy}{dx}\bigg) + \dfrac{dy}{dx} \times \dfrac{d}{dx}x + \dfrac{dy}{dx} = 0 \\

\rm \: x\dfrac{ {d}^{2}y }{d {x}^{2} } + \dfrac{dy}{dx} \times 1 + \dfrac{dy}{dx} = 0 \\

\rm \: x\dfrac{ {d}^{2}y }{d {x}^{2} } + \dfrac{dy}{dx} + \dfrac{dy}{dx} = 0 \\

\rm \: x\dfrac{ {d}^{2}y }{d {x}^{2} } + 2\dfrac{dy}{dx} = 0 \\

On dividing both sides by x, we get

\rm \: \dfrac{ {d}^{2}y }{d {x}^{2} } +  \dfrac{2}{x} \dfrac{dy}{dx} = 0 \\

Hence,

\rm\implies \:\boxed{ { \pmb{ \tt \dfrac{d^{2} y}{d x^{2}}+\dfrac{2}{x}\left(\dfrac{d y}{d x}\right)=0 }}} \\

[ See the alternative solution attached in attachment ]

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Attachments:
Similar questions