Math, asked by michaelgimmy, 7 months ago

Verify that -
 {x}^{3}  +  {y}^{3}  +  {z}^{3}  - 3xyz  =  \frac{1}{2} (x + y + z)( {( x - y)}^{2}  +  {(y - z)}^{2}  +  {(z - x)}^{2} )
REFERENCE -
Class 9 - Exercise 2.5 - Question 12
(Explanation - Mandatory)

❌ Spammers aren't Entertained❌​

Answers

Answered by joelpaulabraham
1

Step-by-step explanation:

LHS = x³ + y³ + z³ - 3xyz

We know that,

x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - xz)

RHS = (1/2)(x + y + z)[(x - y)² + (y - z)² + (z - x)²]

= (1/2)(x + y + z)[(x² - 2xy + y²) + (y² - 2yz + z²) + (z² - 2xz + x²)]

= (1/2)(x + y + z)[x² - 2xy + y² + y² - 2yz + z² + z² - 2xz + x²]

= (1/2)(x + y + z)[x² + x² + y² + y² + z² + z² - 2xy - 2yz - 2xz]

= (1/2)(x + y + z)[2x² + 2y² + 2z² - 2xy - 2yz - 2xz]

= (1/2)(x + y + z)(2)[x² + y² + z² - xy - yz - xz]

= (1/2)(2)(x + y + z)[x² + y² + z² - xy - yz - xz]

= (x + y + z)[x² + y² + z² - xy - yz - xz]

LHS = RHS

Hence Verified.

Hope it helped and you understood it........All the best

Answered by prince5132
16

GIVEN :-

  • x³ + y³ + z³ - 3xyz = 1/2 [(x + y + z){(x - y)² + (y - z)² + (z - x)²

TO VERIFY :-

  • L.H.S = R.H.S.

SOLUTION :-

L.H.S,

 \\  :  \implies \displaystyle \sf \: x ^{3}  + y ^{3}  + z ^{3}  - 3xyz \\  \\  \\

 \bigstar \:  \displaystyle \sf identity \to\: x ^{3}  + y ^{3}  + z ^{3}  - 3xyz  = (x + y + z)(x ^{2}  + y ^{2}  + z ^{2}  - xy - yz - zx) \\  \\  \\

 :  \implies \displaystyle \sf  \bigg(x + y + z \bigg) \bigg(x ^{2}  + y ^{2}  + z ^{2}  - xy - yz - zx \bigg) \\  \\  \\

:  \implies \displaystyle \sf   \dfrac{1}{2}  \bigg(x + y + z \bigg)\Bigg[2x ^{2}  + 2y ^{2}  + 2z ^{2}  -2 xy - 2yz - 2zx \Bigg] \\  \\  \\

:\implies \displaystyle \sf \dfrac{1}{2} \bigg(x + y + z \bigg)\Bigg[x ^{2}  + x ^{2} + y ^{2} + y ^{2}  +  z ^{2} + z ^{2}  -2 xy - 2yz - 2zx \Bigg] \\ \\

On manipulating the terms,

 \\ : \implies  \displaystyle \sf   \dfrac{1}{2}  \bigg(x + y + z \bigg)\Bigg[ \bigg(x ^{2}  + y ^{2}  - 2xy \bigg) +\bigg(y ^{2}  + z ^{2}  - 2yz \bigg) +\bigg(z ^{2}  - x ^{2}  - 2xz \bigg)\Bigg]  \\  \\  \\

 :  \implies  \displaystyle \sf  \dfrac{1}{2}  \bigg(x + y + z \bigg)\Bigg[ \bigg(x  - y \bigg) ^{2}  + \bigg(y - z \bigg) ^{2}   +  \bigg(z - x \bigg) ^{2}  \Bigg] \\  \\  \\

Here we got,

 \\

  • L.H.S = R.H.S

 \\ \\ \boxed{ \boxed{ \boxed{\displaystyle \large{\mathbb{ \red{HENCE \:  \: VERIFIED}}}}}} \\

Similar questions