Math, asked by ggorilla738, 7 months ago

Verify that the numbers 1/2,1,-2 are the zeroes of the cubic polynomial 2x³+x²-5x+2. Also,

verify the relationship between the zeroes and its coefficients.

Answers

Answered by SwiftTeller
128

Appropriate Question:

 \sf{Verify \: that \frac{1}{2} ,1, - 2 \: are \: the \: zeroes \: of \: the \: cubi \: polynomial \:  {2x}^{3}  +  {x}^{2}  - 5x + 2.} \\  \sf{Also \: verify \: the \: relationship \: between \:  the \:  zeroes \: and \: the \: coefficient.}

Solution:

We Have,  \bf{p(x) =  {2x}^{3} +  {x}^{2} - 5x + 2  }

Now,

 \longrightarrow \tt{p \bigg  [ \frac{1}{2} \bigg] = 2  {\bigg[   \frac{1}{2}  \bigg ]}^{3}  } +  {\bigg[    \frac{1}{2}   \bigg ]}^{2}  - 5 {\bigg[    \frac{1}{2}   \bigg ]}^{2}  + 2 \\  \\  \longrightarrow \tt{2 \times  \frac{1}{8}   +  \frac{1}{4} -  \frac{5}{2}  + 2 } \\  \\  \longrightarrow \tt{ \frac{1}{4} +  \frac{1}{4} -  \frac{5}{2}  + 2  } \\  \\  \longrightarrow \tt{ \frac{1 + 1 - 10 + 8}{4} }  = 0

 \tt{p(1) = 2( {1}^{3} ) +  {1}^{2}  - 5(1) + 2} \\ \tt{  = 2 + 1 - 5 + 2 }\\  \tt{ = 5 - 5 }\\  \tt{ = 0}

 \tt{p( - 2) = 2 {( - 2)}^{2} +  {( - 2)}^{2}    - 5( - 2) + 2} \\  \tt{ = 2( - 8) + 4 + 10 + 2 }\\ \tt{  =  - 16 + 16} \\ \tt{  = 0}

 \tt{since \: p \bigg[ \frac{1}{2} \bigg ]=0 \: and \: p(-2)=0} \\

 \tt{Hence, \frac{1}{2} ,1 \: and \:  - 2 \: are \: zeroes \: of \: p(x) =  {2x}^{3}  +  {x}^{2}  - 5x + 2}.

 \tt{let \: \alpha  =  \frac{1}{2}  , \beta  = 1, \gamma  =  - 2} \\

Now,

 \leadsto\tt{\alpha  +  \beta  +   \gamma   }  \\ \tt{ \leadsto  \frac{1}{2} + 1 - 2} \\  \tt{  \leadsto  \frac{1}{2 } - 1  } \\ \tt{  \leadsto \frac{ - 1}{2}  } \\

 \:  \:  \:  \:  \:  \: \tt{  \leadsto \frac{1}{2}  =  \frac{ - coefficiet \: of \:  {x}^{2} }{coefficiet \: of \:  {x}^{3} }  } \\

  \tt{\alpha  \beta  +  \beta  \gamma  +  \alpha  \gamma  =  \frac{1}{2} (1) + (1)( - 2) +  \frac{1}{2} ( - 2)} \\  \\ \tt{  =  \frac{1}{2}  - 2 - 1} \\  \\   \tt{=  \frac{1}{2}  - 3} \\ \\  \tt{  =  \frac{1 - 6}{2} } \\  \\  \tt{ =  \frac{ - 5}{2}  =  \frac{coefficiet \: of \: x}{coefficiet \: of \:  {x}^{3} } }

And,

 \longmapsto \tt{ \alpha  \beta  \gamma =  \frac{1}{2} \times 1 \times ( - 2)  }  \\ \\  \tt{ \longmapsto  - 1} \\ \\  \tt{ \longmapsto \frac{ - 2}{2}  =  \frac{constant \: term}{coefficiet \: of \:  {x}^{3} } }

Similar questions