Math, asked by uteutdgidhjcjhckhc, 5 months ago

verify that the sum of three rational numbers 1/2, 2/3 and 5/4 remains the same even after changing the grouping.​

Answers

Answered by Anonymous
18

\underline{\underline{\underline{\underline{\mathfrak{\blue{ \:\:\:Solution:-\:\:\:}}}}}} \\

\sf {\bigg(\dfrac{1}{2} + \dfrac{2}{3}\bigg) + \dfrac{5}{4} \:  \leftarrow \bigg(First\:add\: \dfrac{1}{2}\: and\: \dfrac{2}{3} \bigg)}\\\\

\longrightarrow \sf {\bigg(\dfrac{1 \times 3}{2 \times 3} + \dfrac{2 \times 2}{3 \times 2}\bigg) + \dfrac{5}{4}}\\\\

\longrightarrow \sf {\bigg(\dfrac{3}{6} + \dfrac{4}{6}\bigg) + \dfrac{5}{4}}\\\\

\longrightarrow \sf {\bigg(\dfrac{3 + 4}{6} \bigg) + \dfrac{5}{4}}\\\\

\longrightarrow \sf {\dfrac{7}{6} + \dfrac{5}{4}}\\\\

\longrightarrow \sf {\dfrac{7 \times 2}{6 \times 2} + \dfrac{5 \times 3}{4 \times 3}}\\\\

\longrightarrow \sf {\dfrac{14}{12} + \dfrac{15}{12}}\\\\

\longrightarrow \sf {\dfrac{14 + 15 }{12} }\\\\

\longrightarrow \sf {\dfrac{29}{12} }\\

_____________________

\sf {\dfrac{1}{2} + \bigg(\dfrac{2}{3} + \dfrac{5}{4}\bigg) \: \leftarrow (Grouping\:is\: changed)}\\\\

\longrightarrow \sf {\dfrac{1}{2} + \bigg(\dfrac{2 \times 4}{3 \times 4} + \dfrac{5 \times 3}{4 \times 3}\bigg) }\\\\

\longrightarrow \sf {\dfrac{1}{2} + \bigg(\dfrac{8}{12} + \dfrac{15}{12}\bigg) }\\\\

\longrightarrow \sf {\dfrac{1}{2} + \bigg(\dfrac{8 + 15}{12} \bigg) }\\\\

\longrightarrow \sf {\dfrac{1}{2} + \dfrac{23}{12}}\\\\

\longrightarrow \sf {\dfrac{1 \times 6}{2 \times 6} + \dfrac{23}{12}}\\\\

\longrightarrow \sf {\dfrac{6}{12} + \dfrac{23}{12}}\\\\

\longrightarrow \sf {\dfrac{6 + 23}{12} }\\\\

\longrightarrow \sf {\dfrac{29}{12} }\\

Hence Verified :)

Answered by Anonymous
0

Answer:

Solution:−

\begin{gathered}\sf {\bigg(\dfrac{1}{2} + \dfrac{2}{3}\bigg) + \dfrac{5}{4} \: \leftarrow \bigg(First\:add\: \dfrac{1}{2}\: and\: \dfrac{2}{3} \bigg)}\\\\\end{gathered}

(

2

1

+

3

2

)+

4

5

←(Firstadd

2

1

and

3

2

)

\begin{gathered}\longrightarrow \sf {\bigg(\dfrac{1 \times 3}{2 \times 3} + \dfrac{2 \times 2}{3 \times 2}\bigg) + \dfrac{5}{4}}\\\\\end{gathered}

⟶(

2×3

1×3

+

3×2

2×2

)+

4

5

\begin{gathered}\longrightarrow \sf {\bigg(\dfrac{3}{6} + \dfrac{4}{6}\bigg) + \dfrac{5}{4}}\\\\\end{gathered}

⟶(

6

3

+

6

4

)+

4

5

\begin{gathered}\longrightarrow \sf {\bigg(\dfrac{3 + 4}{6} \bigg) + \dfrac{5}{4}}\\\\\end{gathered}

⟶(

6

3+4

)+

4

5

\begin{gathered}\longrightarrow \sf {\dfrac{7}{6} + \dfrac{5}{4}}\\\\\end{gathered}

6

7

+

4

5

\begin{gathered}\longrightarrow \sf {\dfrac{7 \times 2}{6 \times 2} + \dfrac{5 \times 3}{4 \times 3}}\\\\\end{gathered}

6×2

7×2

+

4×3

5×3

\begin{gathered}\longrightarrow \sf {\dfrac{14}{12} + \dfrac{15}{12}}\\\\\end{gathered}

12

14

+

12

15

\begin{gathered}\longrightarrow \sf {\dfrac{14 + 15 }{12} }\\\\\end{gathered}

12

14+15

\begin{gathered}\longrightarrow \sf {\dfrac{29}{12} }\\\end{gathered}

12

29

_____________________

\begin{gathered}\sf {\dfrac{1}{2} + \bigg(\dfrac{2}{3} + \dfrac{5}{4}\bigg) \: \leftarrow (Grouping\:is\: changed)}\\\\\end{gathered}

2

1

+(

3

2

+

4

5

)←(Groupingischanged)

\begin{gathered}\longrightarrow \sf {\dfrac{1}{2} + \bigg(\dfrac{2 \times 4}{3 \times 4} + \dfrac{5 \times 3}{4 \times 3}\bigg) }\\\\\end{gathered}

2

1

+(

3×4

2×4

+

4×3

5×3

)

\begin{gathered}\longrightarrow \sf {\dfrac{1}{2} + \bigg(\dfrac{8}{12} + \dfrac{15}{12}\bigg) }\\\\\end{gathered}

2

1

+(

12

8

+

12

15

)

\begin{gathered}\longrightarrow \sf {\dfrac{1}{2} + \bigg(\dfrac{8 + 15}{12} \bigg) }\\\\\end{gathered}

2

1

+(

12

8+15

)

\begin{gathered}\longrightarrow \sf {\dfrac{1}{2} + \dfrac{23}{12}}\\\\\end{gathered}

2

1

+

12

23

\begin{gathered}\longrightarrow \sf {\dfrac{1 \times 6}{2 \times 6} + \dfrac{23}{12}}\\\\\end{gathered}

2×6

1×6

+

12

23

\begin{gathered}\longrightarrow \sf {\dfrac{6}{12} + \dfrac{23}{12}}\\\\\end{gathered}

12

6

+

12

23

\begin{gathered}\longrightarrow \sf {\dfrac{6 + 23}{12} }\\\\\end{gathered}

12

6+23

\begin{gathered}\longrightarrow \sf {\dfrac{29}{12} }\\\end{gathered}

12

29

Hence Verified :)

Step-by-step explanation:

Solution:−</p><p></p><p>\begin{gathered}\sf {\bigg(\dfrac{1}{2} + \dfrac{2}{3}\bigg) + \dfrac{5}{4} \: \leftarrow \bigg(First\:add\: \dfrac{1}{2}\: and\: \dfrac{2}{3} \bigg)} \geqslant \\\\\end{gathered}(21+32)+45←(Firstadd21and32)</p><p></p><p>\begin{gathered}\longrightarrow \sf {\bigg(\dfrac{1 \times 3}{2 \times 3} + \dfrac{2 \times 2}{3 \times 2}\bigg) + \dfrac{5}{4}}\\\\\end{gathered}⟶(2×31×3+3×22×2)+45</p><p></p><p>\begin{gathered}\longrightarrow \sf {\bigg(\dfrac{3}{6} + \dfrac{4}{6}\bigg) + \dfrac{5}{4}}\\\\\end{gathered}⟶(63+64)+45</p><p></p><p>\begin{gathered}\longrightarrow \sf {\bigg(\dfrac{3 + 4}{6} \bigg) + \dfrac{5}{4}}\\\\\end{gathered}⟶(63+4)+45</p><p></p><p>\begin{gathered}\longrightarrow \sf {\dfrac{7}{6} + \dfrac{5}{4}}\\\\\end{gathered}⟶67+45</p><p></p><p>\begin{gathered}\longrightarrow \sf {\dfrac{7 \times 2}{6 \times 2} + \dfrac{5 \times 3}{4 \times 3}}\\\\\end{gathered}⟶6×27×2+4×35×3</p><p></p><p>\begin{gathered}\longrightarrow \sf {\dfrac{14}{12} + \dfrac{15}{12}}\\\\\end{gathered}⟶1214+1215</p><p></p><p>\begin{gathered}\longrightarrow \sf {\dfrac{14 + 15 }{12} }\\\\\end{gathered}⟶1214+15</p><p></p><p>\begin{gathered}\longrightarrow \sf {\dfrac{29}{12} }\\\end{gathered}⟶1229</p><p></p><p>_____________________</p><p></p><p>\begin{gathered}\sf {\dfrac{1}{2} + \bigg(\dfrac{2}{3} + \dfrac{5}{4}\bigg) \: \leftarrow (Grouping\:is\: changed)}\\\\\end{gathered}21+(32+45)←(Groupingischanged)</p><p></p><p>\begin{gathered}\longrightarrow \sf {\dfrac{1}{2} + \bigg(\dfrac{2 \times 4}{3 \times 4} + \dfrac{5 \times 3}{4 \times 3}\bigg) }\\\\\end{gathered}⟶21+(3×42×4+4×35×3)</p><p></p><p>\begin{gathered}\longrightarrow \sf {\dfrac{1}{2} + \bigg(\dfrac{8}{12} + \dfrac{15}{12}\bigg) }\\\\\end{gathered}⟶21+(128+1215)</p><p></p><p>\begin{gathered}\longrightarrow \sf {\dfrac{1}{2} + \bigg(\dfrac{8 + 15}{12} \bigg) }\\\\\end{gathered}⟶21+(128+15)</p><p></p><p>\begin{gathered}\longrightarrow \sf {\dfrac{1}{2} + \dfrac{23}{12}}\\\\\end{gathered}⟶21+1223</p><p></p><p>\begin{gathered}\longrightarrow \sf {\dfrac{1 \times 6}{2 \times 6} + \dfrac{23}{12}}\\\\\end{gathered}⟶2×61×6+1223</p><p></p><p>\begin{gathered}\longrightarrow \sf {\dfrac{6}{12} + \dfrac{23}{12}}\\\\\end{gathered}⟶126+1223</p><p></p><p>\begin{gathered}\longrightarrow \sf {\dfrac{6 + 23}{12} }\\\\\end{gathered}⟶126+23</p><p></p><p>\begin{gathered}\longrightarrow \sf {\dfrac{29}{12} }\\\end{gathered}⟶1229</p><p></p><p>Hence Verified :)</p><p></p><p>

Similar questions