Math, asked by Monalisha9939, 11 months ago

Verify that x^3+y^3+z^3-3xyz=1/2 (x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]

Plz answer

Answers

Answered by Anonymous
9

 \large\bf\underline \pink{Question:-}

x³ + y³ + z³ - 3xyz = ½ (x+y+z) [(x-y)² +. (y-z)² + (z-x)²]

 \huge\rm\underline \red{Verification:-}

\\   \large\bf   \red {\dag \:  {\underline{ \blue{ RHS  : \:  \:   \: }}}}\\\\

\mapsto\rm\: \frac{1}{2}(x + y + z)[(x - y {)}^{2} + (y - z {)}^{2}  + (z - x {)}^{2}  ]  \\  \\ \small\mapsto\rm\: \frac{1}{2}(x + y + z)[( {x}^{2} +  {y}^{2} - 2xy )  + ( {y}^{2}   +  {z}^{2} - 2yz ) +( {z}^{2} +  {x}^{2}  - 2xz )   ] \\  \\  \mapsto\rm\small \frac{1}{2}(x + y + z) [ {x}^{2} +  {x}^{2}  +  {y}^{2}  +  {y}^{2}  +  {z}^{2} +  {z}^{2}    - 2xy - 2yz - 2xz] \\  \\  \mapsto\rm\small \frac{1}{2} (x + y + z)[2 {x}^{2} + 2 {y}^{2} + 2 {z}^{2}   - 2xy - 2yz - 2xz ] \\  \\\mapsto\rm\small \frac{1}{ \cancel2}(x + y + z)   \times  \cancel 2 [ {x}^{2} +  {y}^{2}   +  {z}^{2} - xy - yz - xz  ] \\  \\ \mapsto\rm\:(x + y + z) [{x}^{2} +  {y}^{2}   +  {z}^{2} - xy - yz - xz  ] \\  \\ \mapsto\rm\small\:x({x}^{2} +  {y}^{2}   +  {z}^{2} - xy - yz - xz) + y({x}^{2} +  {y}^{2}   +  {z}^{2} - xy - yz - xz)  \\  \rm \:  \:  \:  \:  \:  \: + z({x}^{2} +  {y}^{2}   +  {z}^{2} - xy - yz - xz) \\  \\  \mapsto \rm {x}^{3}  +x y {}^{2}  +x z {}^{2}  -  {x}^{2}y - xyz -  {x}^{2}  z \\  \:  \rm \small +  {x}^{2}y +  {y}^{3} + yz {}^{2} - x {y}^{2}   -  {y}^{2}z    - xyz \\   \:  \rm \small+  {x}^{2} z  + {y}^{2}z +   {z}^{3} - xyz - y {z}^{2}  - x {z}^{2}  \\  \\ \mapsto\rm\small \:  {x}^{ 3}   +  {y}^{3} +  {z}^{3}   - 3xyz + xy {}^{2} - x {y}^{2}  + x {z}^{2}  \\  \rm \small \:  \: -  x {z}^{2}   -  {x}^{2}y +  {x}^{2}y -  {x}^{2} z +  {x}^{2}z + yz {}^{2}   - yz {}^{2} \\  \\  \mapsto\bf\: {x}^{ 3}   +  {y}^{3} +  {z}^{3}   - 3xyz\\\\

LHS = RHS

Hence verified .

Answered by sethrollins13
3

✯✯ QUESTION ✯✯

Verify that \tt{x}^{3}+{y}^{3}+{z}^{3}-3xyz=\dfrac{1}{2}(x+y+z)[{(x-y)}^{2}+{(y-z)}^{2}+{(z-x)}^{2}]

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

R.H.S : -

\longrightarrow\tt{\dfrac{1}{2}(x+y+z)[{(x-y)}^{2}+{(y-x)}^{2}+{(z-x)}^{2}]}

\longrightarrow\tt{\dfrac{1}{2}(x+y+z)[{x}^{2}+{y}^{2}-2xy+{y}^{2}+{z}^{2}-2yz+{z}^{2}+{x}^{2}-2xz]}

\longrightarrow\tt{\dfrac{1}{2}(x+y+z)[{2x}^{2}+{2y}^{2}+{2z}^{2}-2xy-2yz-2xz]}

\longrightarrow\tt{\dfrac{1}{\cancel{2}}(x+y+z)\cancel{(2)}{(x}^{2}+{y}^{2}+{z}^{2}-xy-yz-xz)}

\longrightarrow\tt{(x+y+z)({x}^{2}+{y}^{2}+{z}^{2}-xy-yz-xz)}

\longrightarrow\tt{{x}^{3}+{y}^{3}+{z}^{3}-3xyz}

\red\longmapsto\:\large\underline{\boxed{\bf\green{L.H.S}\orange{=}\purple{R.H.S}}}

HENCE VERIFIED

Similar questions