verify that - (- X) = X for
(I) x = 2 \ 15
(ii) X = - 13 \ 7
Answers
Answer:
Step-by-step explanation:
(i): The Additive Inverse of x =\frac{11}{15}
15
11
is -x = \frac{-11}{15}
15
−11
Since \frac{11}{15}
15
11
+ (\frac{-11}{15}
15
−11
) = 0
The same equality \frac{11}{15}
15
11
+ (\frac{-11}{15}
15
−11
) = 0 ,
Shows that additive inverse of \frac{-11}{15}
15
−11
is \frac{11}{15}
15
11
or -(\frac{-11}{15}
15
−11
) = \frac{11}{15}
15
11
i. e. -(-x) = x, Hence verified.
(ii): The additive inverse of x =\frac{-13}{17}
17
−13
is -x = \frac{13}{17}
17
13
Since, \frac{-13}{17}
17
−13
+ \frac{13}{17}
17
13
= 0
The same equality \frac{-13}{17}+\ \frac{13}{17\ }=0
17
−13
+
17
13
=0, shows that the additive inverse of \frac{13}{17}
17
13
is \frac{-13}{17}
17
−13
or - (\frac{13}{17}
17
13
) = \frac{-13}{17}
17
−13
i.e. - (-x) = x , Hence verified
Step-by-step explanation:
for x=2/15
-(-2/15)=2/15=x
hence proved
for x= -13/7
-(-13/7)= -13/7=x
hence proved