Math, asked by unicorn567, 11 months ago

verify that (x+y)+z=x+(y+z), if x=4/5 ,y= -3/6, z=-2/15

Answers

Answered by Anonymous
33

\Huge\mathrm{Question:}

Verify that (x+y)+z=x+(y+z) ,if x = 4/5 ,y= -3/6 , z = -2/15 .

\Huge\mathrm{Answer:}

\Large\bf{Left-hand-side:}

\sf{(x + y) + z}

\sf{ (\frac{4}{5}  +  - \frac{3}{6}) +  \frac{ - 2}{15}  }

\sf{( \frac{4}{5}  -  \frac{1}{2}) +  \frac{ - 2}{15}  }

\sf{( \frac{8 - 5}{10}) +  \frac{ -2 }{15}  }

\sf{ \frac{3}{10}  -  \frac{2}{15} }

 \sf{ \frac{9 - 4}{30} }

\sf{  \cancel\frac{5}{30} }

\sf{ \frac{1}{6} }

\Large\bf{Right-hand-side:}

\sf{x + (y + z)}

\sf{ \frac{4}{5}  + (  \frac{ - 3}{6}  + \frac{ - 2}{15} ) }

\sf{ \frac{4}{5}  + ( \frac{ - 15 - 4}{30} )}

\sf{ \frac{4}{5}  + ( \frac{ - 19}{30} )}

\sf{ \frac{4}{5}  -  \frac{19}{30} }

\sf{ \frac{  24 - 19}{ 30} }

\sf{  \cancel\frac{5}{30} }

\sf{ \frac{1}{6} }

\large\bf{Thus,}

\Large{\boxed{\bf{  \frac{1}{6} = \frac{1}{6} }}}

\Large{\boxed{\bf{LHS=RHS}}}

\Large{\boxed{\bf{Hence, \: Verified. }}}

Answered by Anonymous
2

Answer:

Form a quadratic equation whose Roots are x,y,z

Now, let the equation be ax^3 + bx^2 + cx + d= 0

So, Sum x+y+z = -b/a

xy + yz + xz = c/a

xyz = -d/a

If a = 1 , equation will be x^3 -6x^2+15x-14=0

So, x=2 is a root of equation : the equation can be written as (x-2)(x^2 - 4x + 7) =0

Since x^2 - 4x + 7=0 has imaginary roots which are 2+i sqrt{3} and 2-i sqrt{3}

So, the only real solution for this equation is x = 2

Hope this was helpful.

Similar questions