verify that
x³+y³+z³- 3xyz = 1/2 (x + y + z)
Answers
Step-by-step explanation:
x³ + y³ + z³ – 3xyz = 1/2 (x + y + z)[(x - y)² + (y - z )² + (z - x)²] Using R.H.S 1/2 (x + y + z)[(x - y)² + (y - z)² + (z - x)²] = 1/2 (x + y + z)[x² + y² - 2xy + ...
Answer:
Step-by-step explanation:
Your question needs some correction.
Prove that,
x³ + y³ + z³ - 3xyz
= 1/2 (x + y + z) [(x - y)² + (y - z)² + (z - x)²]
Proof.
To prove this identity, we need to take help of another identity.
We know that,
x³ + y³ + z³ - 3xyz
= (x + y + z) (x² + y² + z² - xy - yz - zx) ...(i)
Now, we just need to change
(x² + y² + z² - xy - yz - zx)
as the sum of square term.
So, x² + y² + z² - xy - yz - zx
= 1/2 (2x² + 2y² + 2z² - 2xy - 2yz - 2zx)
= 1/2 (x² - 2xy + y² + y² - 2yz + z² + z² - 2zx + x²)
= 1/2 [(x - y)² + (y - z)² + (z - x)²]
From (i), we get
x³ + y³ + z³ - 3xyz
= 1/2 (x +y + z) [(x - y)² + (y - z)² + (z - x)²]
Thus, confirmed.
I hope it helps you.