verify that x³+y³+z3_3xyz=1/2(x+y+z)[( x_y)²+(y_z)²+(z_x)²]
Answers
Answered by
0
Solution :
First We take R.H.S & use the Formula [(a-b)²=a²+b²-2ab] & simplify it then R.H.S becomes equal to L.H.S
R.H.S
→ 1/2x(x+y+z) (x² + y²-2xy +y+z²-2yz+x²+z²-2xz)
[(a-b)²=a²+b²-2ab]
⇒1/2x(x+y+z) (2x² + 2y² +22²-2xy -2yz-2xz)
1/2x(x+y+z) 2(x² + y² + 2² - xy-yz -xz)
= (x + y + 2) (x² + y² + z² - xy - yz -xz)
= x+y+z²-3xyz = L.H.S
We know that,
[x² + y² + 2²-3xyz = (x+y+z)(x² + y² + z² - xy - yz -xz)]
L.H.S = R.H.S
[x²³+ y² + 2²-3xyz
= (x+y+z)(x² + y² + z² - xy - yz -xz)]
Its easy...
Similar questions