Math, asked by jasiyanoorin, 6 months ago

verify that x³+y³+z3- 3xyz=½ {(x-y)2+(y-z)²+(z-x²)} polynomials ​

Answers

Answered by Anonymous
4

✍️Question:-

\red\bigstar Verify, that  \tt x^{3} + y^{3} + z^{3} - 3xyz = \dfrac{1}{2} {(x - y)^{2} + (y - z)^{2} + (z - x)^{2}}

\rule{300}{1}

✍️How to find?

  • Using appropriate identity firstly put the values and solve till the identity matches the L.H.S .hence the required answer will come.

✍️Solution:-

☃️Solving R.H.S

 \implies \tt \dfrac{1}{2} (x + y + z) [(x - y)^{2} + (y - z)^{2} + (z - x)^{2}] \\ \tt \Using \: identity  (a - b)^{2} = a^{2} + b^{2} - 2ab \\\\ = \tt  \dfrac{1}{2} (x + y + z) [(x^{2} + y^{2} + 2xy) + (y^{2} + z^{2} - 2yz) + (z^{2} + x^{2} - 2zx)] \\\\ =\tt \dfrac{1}{2} (x + y + z) [ 2x^{2} + 2y^{2} + 2z^{2} - 2xy - 2yz - 2zx] \\\\ = \tt \dfrac{1}{2} 2[x^{2} + y^{2} + z^{2} - xy -yz -zx] \\\\  =\tt  (x + y + z) [x^{2} + y^{2} + z^{2} - xy - yz - zx] \\\\ \tt \We \: know\: x^{3} + y^{3} +z^{3} - 3xyz = (x + y + z) (x^{2} + y^{2} + z^{2} - xy - yz - zx) \\\\  = \tt x^{3} + y^{3} + z^{3} - 3xyz

= L.H.S.

___________________________

Hence, we are completed with our problem.

Similar questions