Verify that: x3+y3+z3–3xyz=(x+y+z)[(x–y)2+(y–z)2+(z–x)2]
Answers
Answered by
2
Answer:
it's a wrong questions write correct questions or take a picture and send it to me
Answered by
4
Answer:
Step-by-step explanation:
First We take R.H.S & use the Formula [( a-b)²= a²+b²-2ab] & simplify it then R.H.S becomes equal to L.H.S
R.H.S
⇒ 1/2×(x + y + z) (x²+ y²-2xy +y²+ z²-2yz+x²+z²-2xz)
[( a-b)²= a²+b²-2ab]
⇒ 1/2×(x + y + z) (2x²+ 2y²+2z²-2xy -2yz-2xz)
⇒ 1/2×(x + y + z) 2(x² + y²+ z² – xy – yz – xz)
=(x + y + z) (x² + y²+ z² – xy – yz – xz)
= x³+y³+z³-3xyz
= L.H.S
We know that,
[x³+ y³ + z³– 3xyz = (x + y + z)(x²+ y² + z² – xy – yz – xz)]
L.H.S = R.H.S
[x³+ y³ + z³– 3xyz = (x + y + z)(x²+ y² + z² – xy – yz – xz)]
================================================================
Hope this will help you....
Similar questions
CBSE BOARD X,
5 months ago
English,
5 months ago
English,
10 months ago
History,
10 months ago
Math,
1 year ago