Verify that y = log x, is a solution of the differential
dy
equation
dx
2
+dy by dx
= 0
Answers
Answered by
0
Answer:
Given, (1−y
2
)(1+logx)dx+2xydy=0
⇒
x
(1+logx)dx
=
(1−y
2
)
2ydy
Integrating, we get ∫
x
(1+logx)dx
=∫
(1−y
2
)
2ydy
Let logx=t, so
x
dx
=dt
Also, let y
2
=s, so 2ydy=ds
⇒∫(1+t)dt=∫
1−s
ds
⇒t+
2
t
2
=ln(1−s)+c
⇒logx+
2
(logx)
2
=ln(1−y
2
)+c
When y=0,x=1; we get 0+0=0+c
⇒c=0
⇒logx+
2
(logx)
2
=ln(1−y
2
)
Step-by-step explanation:
Answered by
3
y = log x + c
Differentiating both sides w.r.t.x, we get
dydx=1x+0=1xdydx=1x+0=1x
xdydx=1xdydx=1
Differentiating againi w.r.t x, we get
xd2ydx2+dydx×1=0∴xd2ydx2+dydx=0xd2ydx2+dydx×1=0∴xd2ydx2+dydx=0
The shows that y= log x +c is a solution of the D.E . xd2ydx2+dydx=0
Similar questions
English,
25 days ago
Computer Science,
25 days ago
Math,
25 days ago
Physics,
1 month ago
English,
1 month ago
English,
9 months ago
Social Sciences,
9 months ago