Math, asked by Emmy18, 1 month ago

Verify the 1/2 ,1, -2 are zeroes of cubic polynomial 2x3+x2 −5x +2 . Also verify
the relationship between the zeroes and their coefficients.

Answers

Answered by abdullah19459
1

Answer:

sorry I don't know but I will give u all answer if I can give

Answered by Paritshith
2

Answer:

Hi there, here we have,

p(x) = 2x^3+x^2-5x+2

So, we need to verify whether, \frac{1}{2},1,-2 are zeroes of p(x).

p(\frac{1}{2}) = 2(\frac{1}{2})^3 + (\frac{1}{2})^2-5(\frac{1}{2})+2\\=> 2(\frac{1}{8})+\frac{1}{4}-\frac{5}{2}+2\\=>\frac{1}{4}+\frac{1}{4}-\frac{5}{2}+2\\=> \frac{1}{4}+\frac{1}{4}-\frac{10}{4}+\frac{8}{4}\\=>\frac{10}{4}-\frac{10}{4}\\=> 0

So, \frac{1}{2} is a zero of p(x)

p(1) = 2(1)^3+(1)^2-5(1)+2\\=>2+1-5+2\\=>5-5\\=>0

So, 1 is a zero of p(x)

p(-2) = 2(-2)^3+(-2)^2-5(-2)+2\\=> 2(-8)+4+10+2\\=>-16+4+10+2\\=>16-16\\=> 0

S0, 2 is a zero of p(x)

Now we need to verify the relationship between zeroes and coefficients:

Formulae :

α+β+γ =  \frac{-b}{a}

αβ+βγ+γα = \frac{c}{a}

αβγ = \frac{-d}{a}

Here we have a = 2, b =1, c =-5, d =2

so, α+β+γ =  \frac{1}{2}+1+(-2) = \frac{-b}{a} = -(\frac{1}{2})

        => \frac{1+2-4}{2} = \frac{-1}{2}\\

        => \frac{3-4}{2} = \frac{-1}{2}

        => \frac{-1}{2} = \frac{-1}{2}

And, αβ+βγ+γα =  \frac{1}{2}*1+1*(-2)+(-2)*\frac{1}{2} = \frac{c}{a} = \frac{-5}{2}\\

         =>\frac{1}{2}-2-1=\frac{-5}{2}\\=> \frac{1-4-2}{2} = \frac{-5}{2}\\=>\frac{1-6}{2}=\frac{-5}{2}\\=>\frac{-5}{2}=\frac{-5}{2}

And, αβγ =  \frac{1}{2}*1*(-2) = \frac{-d}{a} = \frac{-2}{2}

         => -1 = -1

So, We verified the relationship between the zeroes and the coefficients of the polynomial.

Hope it helps you,

All the best

                           

Similar questions