verify the algebraic identity: (a+b+c)²=a²+b²+c²+2ab+2bc +2ca
pls give the accurate answer!!!
Answers
Answered by
2
Answer:
Step-by-step explanation:
(a+b+c)^2
=(a+b+c)(a+b+c)
=a(a+b+c)+b(a+b+c)+c(a+b+c)
(distributive law)
=a*a+a*b+a*c+b*a+b*b+b*c+c*a+c*b+c*c
(distributive law)
=a^2+ab+ac+ba+b^2+bc+ca+cb+c^2
=a^2+b^2+c^2+ab+ba+bc+cb+ca+ac
(by rearranging)
=a^2+b^2+c^2+ab+ab+bc+bc+ac+ac
(commutative law)
=a^2+b^2+c^2+2ab+2bc+2ca
HENCE VERIFIED
Answered by
0
Step-by-step explanation:
solution:
L.H.S:
=(a+b)³
=(a+b)(a²+2ab+b²)
=a(a²+2ab+b²)+b(a²+2ab+b²)
=a³+2a²b+ab²+ba²+2ab²+b³
=a³+2a²b+ba²+2ab²+ab²+b³
=a³+b³+3a²b+3ab²
R.H.S:
=a³+b³+3a²b+3ab²
Therefore L.H.S = R.H.S verified
Similar questions