Math, asked by 001857, 2 months ago

verify the associative law of multiplication -3/11,-7/4 and -1/2
please give the answer fast
its very urgent

Answers

Answered by Aryan0123
7

Solution:

Associative law of multiplication states that:

(a × b) × c = a × (b × c)

Here:

  • a = -3/11
  • b = -7/4
  • c = -1/2

a × b

  = \dfrac{ - 3}{11}  \times  \dfrac{ - 7}{4} \\  \\

 =  \dfrac{21}{44}  \\  \\

Now for b × c

  = \dfrac{ - 7}{4}  \times  \dfrac{ - 1}{2}  \\  \\

 =  \dfrac{7}{8}  \\  \\

We need to verify whether

(a × b) × c = a × (b × c)

So,

 \to \:  \dfrac{21}{44}  \times  \dfrac{ - 1}{2}  =  \dfrac{ - 3}{11}  \times  \dfrac{7}{8}  \\  \\

 \implies  \dfrac{ - 21}{88}  =  \dfrac{ - 21}{88}  \\  \\

HENCE VERIFIED

\\

KNOW MORE:

  • There is another important property known as Commutative law which states that:

(a × b) = (b × a)

Answered by WonderfulSoul
12

  \bigstar \: \underline{ \sf \: Associative \:  law \:  of  \: multiplication} :

(a × b) × c = a × (b × c)

Let's Do this :

a = -3/11

b = -7/4

c = -1/2

a × b

   \:  \:  \:  \:  \:  \sf : \implies\dfrac{ - 3}{11}  \times  \dfrac{ - 7}{4}

   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf: \implies\dfrac{21}{44}

Now b × c :

 \:  \:  \:  \:  \:   \sf:\implies \dfrac{ - 7}{4} \times \dfrac{ - 1}{2}

 \:  \:  \:  \:  \:  \:   \sf:\implies \dfrac{7}{8}

Now verify the whether :

(a × b) × c = a × (b × c)

So,

 \:  \:  \:  \:  \:  \:  : \implies \sf \dfrac{21}{44} \times \dfrac{ - 1}{2} = \dfrac{ - 3}{11} \times \dfrac{7}{8}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf: \implies \dfrac{ - 21}{88} = \dfrac{ - 21}{88}

Hence, L.H.S = R.H.S

Similar questions