Math, asked by dnegi4190, 1 year ago

Verify the associative law of multiplication for the rational numbers -(3/13),-(5/7),9/23 also verify the distributive property of addition over multiplication​

Answers

Answered by ashishks1912
19

GIVEN :

The rational numbers are -\frac{3}{13}, -\frac{5}{7} , \frac{9}{23}

TO VERIFY :

The associative law of multiplication for the given rational numbers and also verify the distributive property of addition over multiplication​.

SOLUTION :

Given rational numbers are -\frac{3}{13}, -\frac{5}{7} , \frac{9}{23}

For any rational numbers a, b and c:

The Associative law over multiplication is given by

a\times (b\times c)=(a\times b)\times (a\times c)

Let a=-\frac{3}{13}, b=-\frac{5}{7} , c=\frac{9}{23}

Now substituting the values in the formula,

Now verify the Associative law over multiplication

Now taking LHS

a\times (b\times c)

-\frac{3}{13}\times (-\frac{5}{7}\times \frac{9}{23})

=-\frac{3}{13}\times (\frac{-45}{161})

=\frac{135}{2093}

-\frac{3}{13}\times (-\frac{5}{7})\times \frac{9}{23})=\frac{12}{161}=0.0645=LHS

Now RHS (a\times b)\times  c

(-\frac{3}{13}\times (-\frac{5}{7}))\times \frac{9}{23}

=\frac{15}{91}\times \frac{9}{23}

=\frac{135}{2093}

=0.0645=RHS

∴ LHS = RHS

The Associative law over multiplication for the given rational numbers -\frac{3}{13}, -\frac{5}{7} , \frac{9}{23} is verified.

-\frac{3}{13}\times (-\frac{5}{7}\times \frac{9}{23})=((-\frac{3}{13})\times (-\frac{5}{7}))\times \frac{9}{23}

For any rational numbers a, b and c:

The Distributive property of addition over multiplication is given by

a\times (b+c)=a\times b+a\times c

Let a=-\frac{3}{13}, b=-\frac{5}{7} , c=\frac{9}{23}

Now substituting the values in the formula,

Now verify the Distributive property of addition over multiplication

Now taking LHS

a\times (b+c)

-\frac{3}{13}\times (-\frac{5}{7}+\frac{9}{23})

=-\frac{3}{13}\times (\frac{-115+63}{161})

=-\frac{3}{13}\times (\frac{-52}{161})

=\frac{12}{161}

-\frac{3}{13}\times (-\frac{5}{7}+\frac{9}{23})=\frac{12}{161}=0.0745=LHS

Now RHS a\times b+a\times c

-\frac{3}{13}\times (-\frac{5}{7})+(-\frac{3}{13})\times \frac{9}{23}

=\frac{15}{91}-\frac{27}{299}

=\frac{4485-2457}{27209}

=\frac{2028}{27209}

=0.0745=RHS

∴ LHS = RHS

The Distributive property of addition over multiplication for the given rational numbers -\frac{3}{13}, -\frac{5}{7} , \frac{9}{23} is verified.

-\frac{3}{13}\times (-\frac{5}{7}+\frac{9}{23})=-\frac{3}{13}\times (-\frac{5}{7})+(-\frac{3}{13})\times \frac{9}{23}

Answered by nisharinku77
10

Step-by-step explanation:

here's your ans

mark as a branlist

Attachments:
Similar questions