Math, asked by poonammishraskn, 2 months ago

Verify the Associative Law Of Multiplication for the ratinoal number 3/-13,-5/7 and 9/23 ,Also verify the distrbutive law of multiplication over addition?​

Answers

Answered by kritikaramola39863
1

Answer:

GIVEN :

The rational numbers are -\frac{3}{13}−

13

3

, -\frac{5}{7}−

7

5

, \frac{9}{23}

23

9

TO VERIFY :

The associative law of multiplication for the given rational numbers and also verify the distributive property of addition over multiplication.

SOLUTION :

Given rational numbers are -\frac{3}{13}−

13

3

, -\frac{5}{7}−

7

5

, \frac{9}{23}

23

9

For any rational numbers a, b and c:

The Associative law over multiplication is given by

a\times (b\times c)=(a\times b)\times (a\times c)a×(b×c)=(a×b)×(a×c)

Let a=-\frac{3}{13}a=−

13

3

, b=-\frac{5}{7}b=−

7

5

, c=\frac{9}{23}c=

23

9

Now substituting the values in the formula,

Now verify the Associative law over multiplication

Now taking LHS

a\times (b\times c)a×(b×c)

-\frac{3}{13}\times (-\frac{5}{7}\times \frac{9}{23})−

13

3

×(−

7

5

×

23

9

)

=-\frac{3}{13}\times (\frac{-45}{161})=−

13

3

×(

161

−45

)

=\frac{135}{2093}=

2093

135

-\frac{3}{13}\times (-\frac{5}{7})\times \frac{9}{23})=\frac{12}{161}=0.0645−

13

3

×(−

7

5

23

9

)=

161

12

=0.0645 =LHS

Now RHS (a\times b)\times c(a×b)×c

(-\frac{3}{13}\times (-\frac{5}{7}))\times \frac{9}{23}(−

13

3

×(−

7

5

))×

23

9

=\frac{15}{91}\times \frac{9}{23}=

91

15

×

23

9

=\frac{135}{2093}=

2093

135

=0.0645=RHS

∴ LHS = RHS

The Associative law over multiplication for the given rational numbers -\frac{3}{13}−

13

3

, -\frac{5}{7}−

7

5

, \frac{9}{23}

23

9

is verified.

∴ -\frac{3}{13}\times (-\frac{5}{7}\times \frac{9}{23})=((-\frac{3}{13})\times (-\frac{5}{7}))\times \frac{9}{23}−

13

3

×(−

7

5

×

23

9

)=((−

13

3

)×(−

7

5

))×

23

9

For any rational numbers a, b and c:

The Distributive property of addition over multiplication is given by

a\times (b+c)=a\times b+a\times ca×(b+c)=a×b+a×c

Let a=-\frac{3}{13}a=−

13

3

, b=-\frac{5}{7}b=−

7

5

, c=\frac{9}{23}c=

23

9

Now substituting the values in the formula,

Now verify the Distributive property of addition over multiplication

Now taking LHS

a\times (b+c)a×(b+c)

-\frac{3}{13}\times (-\frac{5}{7}+\frac{9}{23})−

13

3

×(−

7

5

+

23

9

)

=-\frac{3}{13}\times (\frac{-115+63}{161})=−

13

3

×(

161

−115+63

)

=-\frac{3}{13}\times (\frac{-52}{161})=−

13

3

×(

161

−52

)

=\frac{12}{161}=

161

12

-\frac{3}{13}\times (-\frac{5}{7}+\frac{9}{23})=\frac{12}{161}=0.0745−

13

3

×(−

7

5

+

23

9

)=

161

12

=0.0745 =LHS

Now RHS a\times b+a\times ca×b+a×c

-\frac{3}{13}\times (-\frac{5}{7})+(-\frac{3}{13})\times \frac{9}{23}−

13

3

×(−

7

5

)+(−

13

3

23

9

=\frac{15}{91}-\frac{27}{299}=

91

15

299

27

=\frac{4485-2457}{27209}=

27209

4485−2457

=\frac{2028}{27209}=

27209

2028

=0.0745=RHS

∴ LHS = RHS

The Distributive property of addition over multiplication for the given rational numbers -\frac{3}{13}−

13

3

, -\frac{5}{7}−

7

5

, \frac{9}{23}

23

9

is verified.

∴ -\frac{3}{13}\times (-\frac{5}{7}+\frac{9}{23})=-\frac{3}{13}\times (-\frac{5}{7})+(-\frac{3}{13})\times \frac{9}{23}−

13

3

×(−

7

5

+

23

9

)=−

13

3

×(−

7

5

)+(−

13

3

23

9

Answered by princepalindianarmyl
0

Step-by-step explanation:

this is the explaintaination

Attachments:
Similar questions