Math, asked by deeksharemo18, 5 months ago

verify the closure property for addition and multiplication for the rational number -5/7 and 8/9​

Answers

Answered by MasterDhruva
14

➤ Answer :-

Closure property for addition :-

{\tt \longrightarrow  \boxed{\tt\dfrac{( - 5)}{7} + \dfrac{8}{9}} = \boxed{\tt \dfrac{8}{9}  +  \dfrac{( - 5)}{7}}}

Convert them into like fractions by taking the LCM of the denominators i.e, 9 and 7.

LCM of 7 and 9 is 63.

{\tt \longrightarrow \dfrac{( - 5) \times 9}{7 \times 9} + \dfrac{8 \times 7}{9 \times 7}}

{\tt \longrightarrow \dfrac{( - 45)}{63} + \dfrac{56}{63} = \dfrac{( - 45) + 56}{63}}

{\tt \longrightarrow \dfrac{11}{63} }

Verification :-

{\tt \longrightarrow \dfrac{8}{9} + \dfrac{( - 5)}{7}}

{\tt \longrightarrow \dfrac{8 \times 7}{9 \times 7} + \dfrac{( - 5) \times 9}{7 \times 9}}

{\tt \longrightarrow \dfrac{56}{63} + \dfrac{( - 45)}{63} =  \dfrac{56 + ( - 45)}{63}}

{\tt \longrightarrow \dfrac{11}{63}}

\Huge\thereforeClosure property for addition is possible.

━━━━━━━━━━━━━━━━━━━━━━━━━━

Closure property for multiplication :-

{\tt \longrightarrow \boxed{\tt\dfrac{( - 5)}{7} \times \dfrac{8}{9}} =  \boxed{\tt\dfrac{8}{9} \times \dfrac{( - 5)}{7}}}

{\tt \longrightarrow \dfrac{( - 5) \times 8}{7 \times 9} = \dfrac{( - 40)}{63}}

Verification :-

{\tt \longrightarrow \dfrac{8 \times ( - 5)}{9 \times 7}}

{\longrightarrow\tt\dfrac{( - 40)}{63}}

\Huge\thereforeClosure property for multiplication is possible.

━━━━━━━━━━━━━━━━━━━━━━━━━━

More to know................

  • Closure property is a mathematical problem. It is used to calculate the value of adding or multiplying the numbers by changing places.
  • Closure property means solving the problem by changing the place of the numbers or fractions. It only works for addition and multiplication. It cannot be possible for subtraction and division. If we apply it for subtraction and division, the value will be changed.
Similar questions