Math, asked by harshitsinghtannu, 11 months ago

verify the division algorithm 6 x cube + 2 x square - 4 x + 3 is equal to 3 x square - 2 X + 1 into 2 X + 2 + - 2 X + 1​

Answers

Answered by chaitragouda8296
1

Given that :

dividend \:  =  \:  {6x}^{3}  + {2x}^{2}  - 4x + 3 \\ divisor \:  \:  \:  \:  \:  =   {3x}^{2}  - 2x + 1 \\ quotient \:  \:  = 2x + 2 \\ remainder =  - 2x + 1

To prove :

Dividend = Divisor × Quotient + Remainder

 {6x}^{3}  +  {2x}^{2}  - 4x + 3 = ( {3x}^{2}  - 2x + 1)(2x + 2) + ( - 2)x + 1 \\ {6x}^{3}  +  {2x }^{2}  - 4x + 3 =(2x(3 {3x}^{2}  - 2x + 1 )+ 2( {3x}^{2} - 2x + 1) \\  {6x}^{3}  +  {2x}^{2}   - 4x + 3 = {6x}^{3}  -  {4x}^{2}  + 2x +  {6x}^{2}  - 4x + 2 \\  {6x}^{3}  +  {2x}^{2}  - 4x + 3  =  {6x}^{3}  +  {2x}^{2}  - 2x + 2 \:  \:  \\  \\  \: therefore \:  \: . \\  \\  {6x}^{3}  +  {2x}^{2}  - 4x + 3 \:  \: is \: not \: equals \: to \:  {6x}^{3}  +  {2x}^{2}  - 2x + 2

SO,,,,

Dividend Divisor × Quotient + Remainder

Similar questions