verify the division algorithm for polynomials p of X equal to 2 x power 4 - 6 x cube + 2 x square minus x + 2 and g( X )=x+ 2
Answers
GIVEN :
The polynomials and
TO VERIFY :
The Division Algorithm for the given polynomials.
SOLUTION :
Given that the polynomials and
Now divide the polynomial p(x) by g(x)
_________________________
x+2 )
_(-)___(-)______________
__(+)___(+)_________________
___(-)___(-)________
___(+)__(+)_________
92
_______________
∴ quotient is and remainder =92
Now we can verify the Division Algorithm:
Substitute the values in the formula we get
By using the Distributive property :
(x+y+z)(a+b)=(x+y+z)(a)+(x+y+z)(b)
Adding the like terms
Hence LHS = RHS
The division Algorithm is verified.
Step-by-step explanation:
2x²³ - 10x² + 22x - 451 x + 2) 2x² - 6x² + 2x²-x+ 2 -2x4 + 4x³ 3 -10x²³ + 2x²
10x³ - 202²
22x²-x
- 22x²+44x
-45x+2
-45x-90 92
2x² - 6x² +22²-2+2 = (x+2)x(22³-102² +224-45) +92 = 2x² - 6x²³² + 2x²-x+ 2 = 2x²-102²³ +222²-45x + 4x³ - 20x² +44x-90+92
2x² - 6x³ +22²-x+2 = 2x²4 - 10x²³² +222²-45x+4x²³ - 20x² + 44x + 2 -6x² + 2x² - x + 2 = -10x²³ +22x² - 45x + 4x³ - 20x² + 44 x + 2
-6x²³²³ + 2x²_ x = - 6x³ + 2x²-x Hence verified