Math, asked by riyansh54, 1 year ago

Verify the following:
(-1,2, 1),(1,-2,5),(4,-7,8),(2,-3,4) are the vertices of a parallelogram.

Answers

Answered by Anonymous
33
\sf{\underline{\underline{Formula\:to\:be\:used:}}}

PQ = \sqrt{(x_{2}-x_{1}) ^{2} + (y_{2} - y_{1}) ^{2} + (z_{2} - z_{1}) ^{2}}


\sf{\underline{\underline{Let:}}}

( - 1, 2, 1) be denoted by A.

(1, 2, - 5) be denoted by B.

(4, - 7, 8) be denoted by C.

(2, - 3, 4) be denoted by D.


\sf\bold{\underline{\underline{Case\:I}}}

A = ( - 1, 2, 1)

x_{1}=-1, y_{1}=2, z_{1}=1

B = (1, 2, - 5)

x_{2}=1, y_{2}=2, z_{2}=-5


\sf{\underline{\underline{Now}}}:

Substituting these values, in the above formula, we get:

AB = \sqrt{(x_{2}-x_{1}) ^{2} + (y_{2} - y_{1}) ^{2} + (z_{2} - z_{1}) ^{2}}

AB = \sqrt{(1 + 1) ^{2} + ( - 2 - 2) ^{2} + (5 - 1) ^{2} }

AB = \sqrt{4 + 16 + 16}

AB = \sqrt{36}

AB = 6 \: units

\sf{\underline{\underline{Therefore}}}: \boxed{AB = 6\:units}


\sf\bold{\underline{\underline{Case\:II}}}

B = (1, 2, - 5)

x_{1}=1, y_{1}=2, z_{1}=-5

C = (4, - 7, 8)

x_{2}=4, y_{2}=-7, z_{2}=8


\sf{\underline{\underline{Now}}}:

Substituting these values, in the above formula, we get:

BC = \sqrt{(x_{2}-x_{1}) ^{2} + (y_{2} - y_{1}) ^{2} + (z_{2} - z_{1}) ^{2}}

BC = \sqrt{(4 - 1) ^{2} + ( - 7 + 2) ^{2} + (8 - 5) ^{2} }

BC = \sqrt{9 + 25 + 9}

BC = \sqrt{43} \: units

\sf{\underline{\underline{Therefore}}}: \boxed{BC = \sqrt{43 } \: units}


\sf\bold{\underline{\underline{Case\:III}}}

C = (4, - 7, 8)

x_{1}=4, y_{1}=-7, z_{1}=8

D = (2, - 3, 4)

x_{2}=2, y_{2}=-3, z_{2}=4


\sf{\underline{\underline{Now}}}:

Substituting these values, in the above formula, we get:

CD = \sqrt{(x_{2}-x_{1}) ^{2} + (y_{2} - y_{1}) ^{2} + (z_{2} - z_{1}) ^{2}}

CD = \sqrt{(2 - 4) ^{2} + ( - 3 + 7) ^{2} + (4 - 8) ^{2} }

CD = \sqrt{4 + 16 + 16}

CD = \sqrt{36}

CD = 6 \: units

\sf{\underline{\underline{Therefore}}}: \boxed{CD = 6\:units}


\sf\bold{\underline{\underline{Case\:IV}}}

D = (2, - 3, 4)

x_{1}=2, y_{1}=-3, z_{1}=4

A = ( - 1, 2, 1)

x_{2}=-1, y_{2}=2, z_{2}=1


\sf{\underline{\underline{Now}}}:

Substituting these values, in the above formula, we get:

DA = \sqrt{(x_{2}-x_{1}) ^{2} + (y_{2} - y_{1}) ^{2} + (z_{2} - z_{1}) ^{2}}

DA = \sqrt{( - 1 - 2) ^{2} + (2 + 3) ^{2} + (1 - 4) ^{2} }

DA = \sqrt{9 + 25 + 9}

DA = \sqrt{43} \: units

\sf{\underline{\underline{Therefore}}}: \boxed{DA = \sqrt{43 } \: units}


\sf{\underline{\underline{Now,\:we\:know\:that}}}:

AB = CD = 6

\sf{\underline{\underline{And}}}:

BC = AD =  \sqrt{43}


\sf{\underline{\underline{Note}}}: Opposite sides of quadrilateral ABCD, whose vertices are taken in order, are equal.


\sf{\underline{\underline{Therefore}}}:

ABCD is a parallelogram.


\sf{\underline{\underline{Hence}}}:

The given points are the vertices of a parallelogram.

Anonymous: phenomenal ❤️
Swarup1998: Perfect!
Anonymous: Thanks a lot❤️☺️
Similar questions