Math, asked by deepanshshrivastava2, 7 hours ago

verify the following a=3 b=4
I will mark you as brainliest​

Attachments:

Answers

Answered by brian6322
1

Answer:

(3 + 4)² = 3²+ 2×3×4 +4² = 9 + 24 + 16 = 39

(3 - 4)² = 3²- 2×3×4 +4² = 9 - 24 +16 = 31

(3 + 4) (3 - 4) = 3² - 4² , 7×1 = 9 - 16 , 7 = 7 (LHS = RHS)

Answered by Anonymous
41

Answer:

Solution :

Verify the following for a = 3 and b = 4.

a) (a + b)² = a² + 2ab + b²

Here

  • ↝ a = 3
  • ↝ b = 4

Now :-

\longrightarrow\small\sf{(a + b)}^{2}  =  {a}^{2}  + 2ab +  {b}^{2}

\longrightarrow\small\sf{(3 + 4)}^{2}  =  {3}^{2}  + 2 \times 3 \times 4 +  {4}^{2}

{\longrightarrow{\small{\sf{(7)}^{2}  =  {(3 \times 3)} + 6 \times 4 +  {(4 \times 4)}}}}

{\longrightarrow{\small{\sf{(7 \times 7)} =  9 + 24 + 16}}}

{\longrightarrow{\small{\sf{49 = 49}}}}

\longrightarrow{\small{\sf{\underline{\underline{LHS = RHS}}}}}

Hence Verified!

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

b) (a - b)² = a² - 2ab + b²

Here :-

  • ↝ a = 3
  • ↝ b = 4

Now :-

\longrightarrow\small\sf{(a  -  b)}^{2}  =  {a}^{2}   -  2ab +  {b}^{2}

\longrightarrow\small\sf{(3  -  4)}^{2}  =  {3}^{2}   -  2 \times 3  \times  4 +  {4}^{2}

\longrightarrow\small\sf{( - 1)}^{2}  =  {(3 \times 3)}  -  6\times  4 +  {(4 \times 4)}

{\longrightarrow{\small{\sf{( - 1 \times  - 1)}  =  9-  24+ 16}}}

{\longrightarrow{\small{\sf{1}  =  25-  24}}}

{\longrightarrow{\small{\sf{1  =  1}}}}

\longrightarrow{\small{\sf{\underline{\underline{LHS = RHS}}}}}

Hence Verified!

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

c) (a + b)(a - b) = a² - b²

Here :-

  • ↝ a = 3
  • ↝ b = 4

\longrightarrow\small\sf{(a   + b)(a - b)=   {a}^{2} -  {b}^{2}  }

\longrightarrow\small\sf{(3   + 4)(3- 4)=   {3}^{2} -  {4}^{2}  }

\longrightarrow\small\sf{(7)( - 1)=   (3 \times 3) - (4 \times 4)  }

\longrightarrow\small\sf{7 \times - 1=   9 - 16 }

\longrightarrow\small\sf{-7=  - 7}

\longrightarrow{\small{\sf{\underline{\underline{LHS = RHS}}}}}

Hence Verified!

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

Learn More :

Algebraic identities:-

➛ (a + b)² + (a - b)² = 2a² + 2b²

➛ (a + b)² - (a - b)² = 4ab

➛ (a+b)(a -b) = a² - b²

➛ (a + b + c)² = a²+ b²+ c²+ 2ab + 2bc + 2ca

➛ a² + b² = (a + b)² - 2ab

➛ (a + b)³ = a³ + b³ + 3ab ( a + b)

➛ (a - b)³ = a³ - b³ - 3ab ( a - b)

➛ a³ + b³ = (a +b)(a² - ab + b²)

➛ a³ - b³ = (a-b)(a² + ab +b²)

➛ If a + b + c = 0 then a³ + b³ + c³ = 3abc

Similar questions