Math, asked by Anonymous, 1 year ago

Verify the following.

(ab + bc)(ab – bc) + (bc + ca)(bc – ca) + (ca + ab)(ca – ab) = 0.

(m + n)(m2 – mn + n2) = m3 + n3

Answers

Answered by BrainlyQueen01
80

Hi there !



_______________________



Given :



✴ (ab + bc)(ab – bc) + (bc + ca)(bc – ca) + (ca + ab)(ca – ab) = 0.



Using identity :



( x + y ) ( x - y ) = (x)² - (y)²



(ab + bc)(ab – bc) + (bc + ca)(bc – ca) + (ca + ab)(ca – ab) = 0.



=> (ab)² - (bc)² + (bc)² - (ca)² + (ca)² - (ab)² = 0



=> on cancelling the like terms, we have;



=> 0 = 0



Therefore,



(ab + bc)(ab – bc) + (bc + ca)(bc – ca) + (ca + ab)(ca – ab) = 0.



_______________________



✴ (m + n)(m² – mn + n²) = m³ + n³



Using identity ;



a³ + b³ = (a + b)(a² - ab + b²)



So, we have ;



(m + n)(m² – mn + n²) = m³ + n³



=> m³ + n³ = m³ + n³.



________________



Thanks for the question !



☺☺☺


Anonymous: รupɛʀɓ ɑɳรwɛʀ
Aurorio: gяєαт αиѕωєя
MsQueen: Awesome :)
Answered by SmãrtyMohït
24
Here is your solution

Given :-

(ab + bc)(ab – bc) + (bc + ca)(bc – ca) + (ca + ab)(ca – ab) = 0.

Now we use identities

(x - y)(x + y) = x {}^{2} - y {}^{2}
(ab + bc)(ab – bc) + (bc + ca)(bc – ca) + (ca+ab)(ca–ab) = 0(given)

=>(ab){}^{2} - (bc){}^{2} + (bc){}^{2} - (ca){}^{2} + \\(ca){}^{2} - (ab){}^{2} =0 \\=>0= 0

Now,
(m + n)(m{}^{2} -mn + n {}^{2} )=m {}^{3}+n{}^{3}

Using identities

a {}^{3} + b {}^{3} =(a+b)(a {}^{2}-ab +b{}^{2} )

Hence
(m+n)(m{}^{2}-mn+n{}^{2} ) =m{}^{3}+n{}^{3} \\ => m {}^{3} + n{}^{3} =m{}^{3}+n {}^{3}

hope it helps you
Similar questions