Verify the following.
(ab + bc)(ab – bc) + (bc + ca)(bc – ca) + (ca + ab)(ca – ab) = 0.
(m + n)(m2 – mn + n2) = m3 + n3
Answers
Answered by
80
Hi there !
_______________________
• Given :
✴ (ab + bc)(ab – bc) + (bc + ca)(bc – ca) + (ca + ab)(ca – ab) = 0.
Using identity :
( x + y ) ( x - y ) = (x)² - (y)²
(ab + bc)(ab – bc) + (bc + ca)(bc – ca) + (ca + ab)(ca – ab) = 0.
=> (ab)² - (bc)² + (bc)² - (ca)² + (ca)² - (ab)² = 0
=> on cancelling the like terms, we have;
=> 0 = 0
Therefore,
(ab + bc)(ab – bc) + (bc + ca)(bc – ca) + (ca + ab)(ca – ab) = 0.
_______________________
✴ (m + n)(m² – mn + n²) = m³ + n³
Using identity ;
a³ + b³ = (a + b)(a² - ab + b²)
So, we have ;
(m + n)(m² – mn + n²) = m³ + n³
=> m³ + n³ = m³ + n³.
________________
Thanks for the question !
☺☺☺
Anonymous:
รupɛʀɓ ɑɳรwɛʀ
Answered by
24
Here is your solution
Given :-
(ab + bc)(ab – bc) + (bc + ca)(bc – ca) + (ca + ab)(ca – ab) = 0.
Now we use identities
(ab + bc)(ab – bc) + (bc + ca)(bc – ca) + (ca+ab)(ca–ab) = 0(given)
Now,
Using identities
Hence
hope it helps you
Given :-
(ab + bc)(ab – bc) + (bc + ca)(bc – ca) + (ca + ab)(ca – ab) = 0.
Now we use identities
(ab + bc)(ab – bc) + (bc + ca)(bc – ca) + (ca+ab)(ca–ab) = 0(given)
Now,
Using identities
Hence
hope it helps you
Similar questions