Math, asked by ⲎσⲣⲉⲚⲉⲭⳙⲊ, 2 months ago

Verify the following reduction formula:
\displaystyle \int \sec^n(u)\, du=\frac{\sec^{n-2}(u)\tan(u)}{n-1}+\frac{n-2}{n-1}\int \sec^{n-2}(u)\, du, \; n\neq 1


Anonymous: break sec^n as sec^2* sec^(n-2),then break sec^2 as 1 +tan^2.

Answers

Answered by MaheswariS
13

\textbf{Given:}

\mathsf{\int\,sec^nu\;du}

\textbf{To find:}

\textsf{Reduction formula for}\;\mathsf{\int\,sec^nu\;du}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{\int\,sec^nu\;du}

\textsf{We apply Integration by parts formula}

\boxed{\mathsf{\int\,m\,dn=mn-\int\,n\;dm}}

\mathsf{=\int\,sec^{n-2}u\,(sec^2u\,du)}

\mathsf{Take,}

\mathsf{m=sec^{n-2}u\;\implies\;dm=(n-2)\,sec^{n-3}u\;du}

\mathsf{dn=sec^u\,du\;\implies\;\int\,dn=\int\,sec^2u\,du\;\implies\;n=tanu}

\mathsf{Now,}

\mathsf{\int\,sec^nu\;du=sec^{n-2}u\,tanu-\int\,tanu\,(n-2)sec^{n-3}u\,(secu\,tanu)du}

\mathsf{\int\,sec^nu\;du=sec^{n-2}u\,tanu-\int\,tanu\,(n-2)sec^{n-3}u(secu\,tanu)du}

\mathsf{\int\,sec^nu\;du=sec^{n-2}u\,tanu-(n-2)\int\,tan^2u\,sec^{n-2}u\,du}

\mathsf{\int\,sec^nu\;du=sec^{n-2}u\,tanu-(n-2)\int(sec^2u-1)\,sec^{n-2}u\,du}

\mathsf{\int\,sec^nu\;du=sec^{n-2}u\,tanu-(n-2)\int(sec^nu-sec^{n-2}u)du}

\mathsf{\int\,sec^nu\;du=sec^{n-2}u\,tanu-(n-2)\int\,sec^nu\,du+(n-2)\int\,sec^{n-2}udu}

\mathsf{\int\,sec^nu\;du+(n-2)\int\,sec^nu\,du=sec^{n-2}u\,tanu+(n-2)\int\,sec^{n-2}udu}

\mathsf{(n-1)\int\,sec^nu\,du=sec^{n-2}u\,tanu+(n-2)\int\,sec^{n-2}udu}

\implies\boxed{\mathsf{\int\,sec^nu\,du=\dfrac{sec^{n-2}u\,tanu}{n-1}+\dfrac{n-2}{n-1}\int\,sec^{n-2}udu}}

\textbf{Find more:}

Similar questions