verify the following.
V5-1 TT i) sin18° = sin 2IT - Cos 72° = cos 25 11 10 4
Answers
Step-by-step explanation:
sin 18°/cos 72°
Since, sin (90° - θ) = cos θ
Here, θ = 72°
sin 18°/cos 72° = sin (90° - 72°)/cos 72°
= cos 72° / cos 72°
= 1
Step-by-step explanation:
We will be using the trigonometric ratios of complementary angles to solve the given question.
sin (90° - θ) = cos θ
tan (90° - θ) = cot θ
sec (90° - θ) = cosec θ
(i) sin 18°/cos 72°
Since, sin (90° - θ) = cos θ
Here, θ = 72°
sin 18°/cos 72° = sin (90° - 72°)/cos 72°
= cos 72° / cos 72°
= 1
(ii) tan 26°/cot 64°
tan (90° - θ) = cot θ
Here, θ = 64°
tan 26°/cot 64° = tan (90° - 64°) / cot 64°
= cot 64°/cot 64°
= 1
(iii) cos 48° - sin 42°
Since, sin (90° - θ) = cos θ
Here, θ = 48°
cos 48° - sin 42° = cos 48° - sin (90° - 48°)
= cos 48° - cos 48°
= 0
(iv) cosec 31° - sec 59°
sec (90° - θ) = cosec θ
Here, θ = 31°
cosec 31° - sec 59° = cosec 31° - sec (90° - 31°)
= cosec 31° - cosec 31°
= 0